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Preface

The book presents modern results in discrete mathematics and combina-
torics, its purpose being to popularise recent developments in this area, and
to encourage further research. Structured in ten chapters, it provides theo-
retical results illustrated by many examples and applications.

The first part of the book is dedicated to useful identities for polynomials,
sums and products, along with methods of proof and counting strategies.

• Chapter 1 presents fundamental identities and techniques required for
efficient work with quadratics and polynomials of higher degree.

• Chapter 2 is dedicated to important examples of sums and products, in-
cluding telescopic sums, sums of perfect powers, trigonometric sums and
finite products.

• Chapter 3 presents fundamental proof techniques, including proof by
contradiction, induction, or by the pigeon hole principle.

• Chapter 4 is devoted to counting strategies. Here we review permuta-
tions, combinations, binomial coefficients. We present numerous results
for classical sets and also for multisets. We then illustration the inclusion-
exclusion principle, and counting strategies focused on bijections, or mul-
tiple ways of counting, as well as by using Hall’s marriage theorem.

The second presents key results regarding generating functions and re-
cursive processes, with an emphasis on recent work on sequences of Lu-
cas and Pell-Lucas polynomials, and integral representations for classical
sequences.

• In Chapter 5 we discuss the general theory of ordinary and exponential
generating functions, supported by numerous examples. In this context
we also present a useful versions of the Cauchy integral formula, which
has many applications.

• Chapter 6 is dedicated to recursive processes, with separate sections for
first, second, and higher-order linear recursions. We then discuss the se-
quences of Lucas and Pell-Lucas polynomials, for which we provide or-
dinary and exponential generating functions, as well as explicit formu-
lae for Fibonacci, Lucas, Pell and Pell-Lucas polynomials. In particular,
we discuss applications to classical sequences, for which we also provide
some integral representations.

v



vi Preface

The third part of the book is devoted to special polynomials, starting with
polynomials in multiple variables, followed by cyclotomic and inverse cy-
clotomic polynomials.

• Chapter 7 presents key results on symmetric polynomials, presenting
Newton’s formulas, along side number theoretic applications.

• Chaper 8 is devoted to cyclotomic polynomials and their numerous appli-
cations. We start with some background information on arithmetic func-
tions, Möbius function and Ramanujan sums. We then discuss the def-
inition and basic properties of the cyclotomic polynomials, along with
results on the magnitude (Suzuki), integral formula, or various recent re-
current formulae for the coefficients of cyclotomic polynomials, some of
which are original. In a similar framework we also analyse the inverse
cyclotomic polynomials, whose investigation is more recent.

• Chapter 9 presents a variety of special polynomials, including polygonal,
Gaussian, multinomial, Catalan polynomials, for which we discuss recur-
sive and integral formulae for the coefficients, related integer sequences,
and combinatorial interpretations. Much of this work involves original
research results published by the authors in the recent years.

Finally, Chapter 10 is devoted to the study of special types of ordered par-
titions of sets of multisets. We start from the classical signum equations, and
then build the theory allowing us to study k-partitions with equal sums of
multisets, whose number is computed using integral formulae. The results
are linked to diophantine equations and novel integer sequences.

The book comes with 244 references suggesting further reading, and an
index to help the readers to easily navigate the contents. It can be a useful
resource for researchers and scholars interested in recent advances in the
field of discrete mathematics, postgraduate students in college or university
and their instructors, or advanced high school students.

We would like to thank Professor Andrei Mărcuş and Associate Professor
Cornel Pintea for their constructive remarks and suggestions, which helped
us improve the quality of the manuscript. We also thank them for recom-
mending this book for publication.

Special thanks to our families for their continuous and discrete support.

The authors
February 2023
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Chapter 1
Identities. Polynomials

1.1 Basic identities

We start by exploring various polynomial identities that are commonly used
in mathematics and emphasize some of their practical applications. Identi-
ties are an essential tool in solving many mathematical problems, ranging
from problems in algebra to geometry and beyond. They frequently allow
one to simplify expressions and evaluate complicated functions.

1. Difference of powers.

an − bn = (a− b)(an−1b0 + an−2b1 + · · ·+ a1bn−2 + bn−1a0).

Some useful forms of this identity occur for n = 2 where we have

a2 − b2 = (a− b)(a + b),

and for n = 3 in which case

a3 − b3 = (a− b)(a2 + ab + b2).

Note that when a = 1 one obtains the sum of a geometric series

1 + b + b2 + · · ·+ bn−1 =
bn − 1
b− 1

.

2. Sum of odd powers.

a2n+1 + b2n+1 = (a + b)(a2nb0 − a2n−1b1 + · · · − a1b2n−1 + b2na0).

This identity follows by substituting b′ = −b into identity 1. The most com-
mon form is obtained for n = 1, giving the sum of cubes:

a3 + b3 = (a + b)(a2 − ab + b2).

1



2 1 Identities. Polynomials

Also, when a = 1, one obtains the sum of an alternate geometric series:

1− b + b2 + · · · − b2n−1 + b2n =
b2n+1 + 1

b + 1
.

3. Product of sums of powers.

(x + a)(x2 + a2) · · · (x2n−1 + a2n−1) =
x2n − a2n

x− a
. (1.1)

The proof to this identity follows by multiplication of both sides by x − a
and by successive application of the difference of squares formula

(u− v)(u + v) = u2 − v2.

After n− 1 steps we get

(x2n−1 − a2n−1
)(x2n−1

+ a2n−1
) = x2n − a2n

,

and this relation is obvious since

x2n − a2n
= (x2n−1

)2 − (a2n−1
)2.

4. Collapsing trinomial factorization.

(x2 − ax + a2) · · · (x2n − x2n−1
a2n−1

+ a2n
) =

x2n+1
+ x2n

a2n
+ a2n+1

x2 + ax + a2 .

The idea of proof is similar to the proof given for the previous identity.
Multiply both sides by x2 + ax + a2 and use successively the relation

(u2 + uv + v2)(u2 − uv + v2) = (u2 + v2)2 − (uv)2 = u4 + u2v2 + v4.

After n steps we get

(x2n
+ x2n−1

a2n−1
+ a2n

)(x2n − x2n−1
a2n−1

+ a2n
) = x2n+1

+ x2n
a2n

+ a2n+1
,

and the last relation is true because the same argument.

Example 1.1. Let n be a positive integer. Prove the identity

24n+2 + 1 = (22n+1 + 2n+1 + 1)(22n+1 − 2n+1 + 1).

Solution. We have

(22n+1 + 2n+1 + 1)(22n+1 − 2n+1 + 1) = (22n+1 + 1)2 − (2n+1)2

= 24n+2 + 22n+2 + 1− 22n+2 = 24n+2 + 1.
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Example 1.2 (Balkan 1997). Let x,y be non-zero real numbers with |x| 6= |y| and

x2 + y2

x2 − y2 +
x2 − y2

x2 + y2 = k,

for some real number k. Find in terms of k the value of

x8 + y8

x8 − y8 +
x8 − y8

x8 + y8 .

Solution. The equality

x2 + y2

x2 − y2 +
x2 − y2

x2 + y2 = k

implies
(x2 + y2)2 + (x2 − y2)2

x4 − y4 = k,

hence

x4 + y4

x4 − y4 =
k
2

,

from where one obtains
(

x
y

)2
=

k + 2
k− 2

. Therefore

x8 + y8

x8 − y8 +
x8 − y8

x8 + y8 =
(x8 + y8)2 + (x8 − y8)2

x16 − y16 =
2(x16 + y16)

x16 − y16

= 2

(
k + 2
k− 2

)4
+ 1(

k + 2
k− 2

)4
− 1

= 2
(k + 2)4 + (k− 2)4

(k + 2)4 − (k− 2)4 .

Example 1.3. Find a relation between the numbers a,b, c if

x +
1
x
= a, y +

1
y
= b, xy +

1
xy

= c.

Solution. We have(
x +

1
x

)(
y +

1
y

)
= xy +

1
xy

+
x
y
+

y
x

,

hence x
y
+

y
x
= ab− c.
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On the other hand(
x
y
+

y
x

)(
xy +

1
xy

)
= x2 + y2 +

1
x2 +

1
y2

=

(
x +

1
x

)2
+

(
y +

1
y

)2
− 4 = a2 + b2 − 4,

hence
(ab− c)c = a2 + b2 − 4.

The desired relation is

a2 + b2 + c2 − abc = 4.

Example 1.4 (Balkan 2000). Let x,y be integers such that

x3 + y3 + (x + y)3 + 30xy = 2000.

Prove that x + y = 10.

Solution. We have

E = x3 + y3 + (x + y)3 + 30xy− 2000

= 2(x + y)3 − 3x2y− 3xy2 + 30xy− 2000

= 2[(x + y)3 − 1000]− 3xy(x + y− 10)

= (x + y− 10)[2((x + y)2 + 10(x + y) + 100)− 3xy]

= (x + y− 10)(2x2 + xy + 2y2 + 20x + 20y + 200)
= (x + y− 10)F.

Since

F = 2x2 + xy + 2y2 + 20x + 20y + 200

= (x2 + xy + y2) + (x2 + 20x + 100) + (y2 + 20y + 100)

=
x2 + y2 + (x + y)2

2
+ (x + 10)2 + (y + 10)2 > 0,

it follows that x + y = 10.

Example 1.5. Let fn = 22n
+ 1, n = 0,1, . . ., be the Fermat’s numbers. Prove that

fn = f0 f1 f2 · · · fn−1 + 2.

Solution 1. By formula (1.1) (product of sum of powers) for a = 1 to get

(x + 1)(x2 + 1)(x4 + 1) . . . (x2n−1
+ 1) =

x2n − 1
x− 1

.
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Taking x = 2 one obtains f0 · f1 · f2 . . . fn−1 = 22n − 1, hence if follows that
fn = f0 · f1 · f2 . . . fn−1 + 2, and we are done.

Solution 2. We have

fk = 22k
+ 1 = 22k−1·2 + 1 = ( fk−1 − 1)2 + 1 = f 2

k−1 − 2 fk−1 + 2,

hence fk − 2 = fk−1( fk−1 − 2). Multiplying for k = 1,2, . . . ,n yields

fn − 2 = fn−1 . . . f1 · f0( f0 − 2),

and since f0 = 3, we obtain the desired relation.

Example 1.6. Factorize (x + y + z)3 − x3 − y3 − z3.

Solution. Let E = E(x,y,z) be the expression to be factorized. Using the dif-
ference of cubes and the sum of cubes, we have

E = (x + y + z)3 − x3 − (y3 + z3)

= (y + z)[(x + y + z)2 + x(x + y + z) + x2]− (y + z)(y2 − yz + z2)

= (y + z)(3x2 + 3xy + 3yz + 3zx) = 3(x + y)(y + z)(z + x).

Remark. From the above factorization it follows that

(x + y + z)3 = x3 + y3 + z3

if and only if x + y = 0 or y + z = 0, or z + x = 0.

Example 1.7. Let a 6= 1 be a complex number and let n be a positive integer. Prove
the identity

(1 + a + a2 + · · ·+ an)(1 + an+1) = 1 + a + a2 + · · ·+ a2n+1.

Solution. Just multiply in the left hand side and get

(1+ a+ a2 + · · ·+ an)+ (an+1 + an+2 + · · ·+ a2n+1) = 1+ a+ a2 + · · ·+ a2n+1.

Example 1.8. Show that if a,b, c ∈ C satisfy abc 6= 0 and a + b + c = 0, then

1
−a2 + b2 + c2 +

1
a2 − b2 + c2 +

1
a2 + b2 − c2 = 0.

Solution. We have a = −(b + c), hence we get

−a2 + b2 + c2 = −(b + c)2 + b2 + c2 = −2bc.

Similarly,

a2 − b2 + c2 = −2ac and a2 + b2 − c2 = −2ab.
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Therefore,

1
−a2 + b2 + c2 +

1
a2 − b2 + c2 +

1
a2 + b2 − c2 = −1

2

(
1
bc

+
1
ac

+
1
ab

)

= − 1
2abc

(a + b + c) = 0.

Example 1.9. Let n ≥ 1 be an integer. Prove that 32n − 1 contains in its factoriza-
tion at least 2n + 1 primes, not necessarily distinct.

Solution. From identity 3) we have

32n − 1 = 2(3 + 1)(32 + 1) · · · (32n−1
+ 1)

= 23(32 + 1) · · · (32n−1
+ 1).

Each factor 32 + 1,322
+ 1, . . . ,32n−1

+ 1 is even, hence it is divisible by 2. We
get 3 + n− 1 = n + 2 factors of 2. We also have at least n− 1 other primes in
factorization of 32n − 1, and the conclusion follows.

Example 1.10 (Romania 2000). If x,y,z, t are non-zero real numbers. Determine
the sum x + y + z + t if the numbers satisfy

x + y + z = t
1
x
+

1
y
+

1
z
=

1
t

x3 + y3 + z3 = 10003.

Solution. Multiplying the first two relations we get

(x + y + z)(xy + yz + zx) = xyz,

hence
(x + y)(y + z)(z + x) = 0,

from where x + y = 0 or y + z = 0, or z + x = 0, that is x + y + z + t = 2t.
From the last equality we get t = 1000, hence x + y + z + t = 2000.

1.2 A useful identity

The following factorization occurs in a large number of problems, but ow-
ing to its relative obscurity is oftentimes overlooked. It can make a problem
much easier! For any complex numbers a,b, c, we have

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab− bc− ca). (1.2)
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Proof 1. Multiply the factors on the right hand and cancel the similar terms.

Proof 2. Let P denote the polynomial with roots a,b, c:

P(X) = X3 − (a + b + c)X2 + (ab + bc + ca)X− abc.

Because a,b, c satisfy the equation P(x) = 0, we obtain

a3 − (a + b + c)a3 + (ab + bc + ca)a− abc = 0,

b3 − (a + b + c)b3 + (ab + bc + ca)b− abc = 0,

c3 − (a + b + c)c3 + (ab + bc + ca)c− abc = 0.

Adding up these three equalities yields

a3 + b3 + c3− (a+ b+ c)(a2 + b2 + c2)+ (ab+ bc+ ca)(a+ b+ c)− 3abc = 0.

Hence

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab− bc− ca).

Proof 3. Another way to obtain the identity (1.2) is to use the determinant:

D =

∣∣∣∣∣∣
a b c
c a b
b c a

∣∣∣∣∣∣ .
Expanding D, we obtain

D = a3 + b3 + c3 − 3abc.

On the other hand, adding all columns to the first one gives

D =

∣∣∣∣∣∣
a + b + c b c
a + b + c a b
a + b + c c a

∣∣∣∣∣∣ = (a + b + c)

∣∣∣∣∣∣
1 b c
1 a b
1 c a

∣∣∣∣∣∣
= (a + b + c)(a2 + b2 + c2 − ab− bc− ca).

Remark. 1◦ Whenever a + b + c = 0, we have that

a3 + b3 + c3 = 3abc. (1.3)

2◦ For a,b, c ∈R one has a3 + b3 + c3 = 3abc if and only if a + b + c = 0 or
a = b = c. Indeed, if a + b + c 6= 0, then from (1.2) we get
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a2 + b2 + c2 − ab− bc− ca = 0.

That is (a− b)2 + (b− c)2 + (c− a)2 = 0, and the conclusion follows.

3◦ As we have seen above, the expression

a2 + b2 + c2 − ab− bc− ca

can also be written as

1
2
[(a− b)2 + (b− c)2 + (c− a)2].

We obtain another version of the identity (1.2):

a3 + b3 + c3 − 3abc =
1
2
(a + b + c)[(a− b)2 + (b− c)2 + (c− a)2].

4◦ The complete factorization of a3 + b3 + c3 − 3abc is

a3 + b3 + c3 − 3abc = (a + b + c)(a + bω + cω2)(a + bω + cω2) (1.4)

where ω is a cubic root of unity different from 1. Indeed, let us regard

a2 + b2 + c2 − ab− bc− ca

as a quadratic in a, with parameters b, c. This quadratic has discriminant

∆ = (b + c)2 − 4(b2 + c2 − bc) = −3(b− c)2.

Hence its roots are

a1 =
b + c− i(b− c)

√
3

2
= b

1− i
√

3
2

+ c
1 + i
√

3
2

and

a2 =
b + c + i(b− c)

√
3

2
= b

1 + i
√

3
2

+ c
1− i
√

3
2

.

Setting ω =
−1 + i

√
3

2
, one of the primitive cubic roots of the unity, we have

ω2 =
−1− i

√
3

2
,

hence a1 = −bω− cω2 and a2 = −bω2 − cω. This gives the factorization

a2 + b2 + c2 − ab− bc− ca = (a + bω + cω2)(a + bω2 + cω),

which leads to the identity (1.4).
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Example 1.11. Factor (x + 2y− 3z)3 + (y + 2z− 3x)3 + (z + 2x− 3y)3.

Solution. Denote

a = x + 2y− 3z, b = y + 2z− 3x, c = z + 2x− 3y,

and observe that a + b + c = 0. By (1.3) it follows

a3 + b3 + c3 = 3abc,

hence the desired factorization is

(x + 2y− 3z)3 + (y + 2z− 3x)3 + (z + 2x− 3y)3

= 3(x + 2y− 3z)(y + 2z− 3x)(z + 2x− 3y).

Example 1.12. Let a,b, c be integers such that

(a− b)2 + (b− c)2 + (c− a)2 = abc.

Prove that a3 + b3 + c3 is divisible by a + b + c + 6.

Solution. We first notice that at least one of a,b, c is even. Indeed, if a,b, c are
all odd, the left-hand side of the given equality is even while the right-hand
side is odd, a contradiction. Because

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab− bc− ca),

and

a2 + b2 + c2 − ab− bc− ca =
1
2
[(a− b)2 + (b− c)2 + (c− a)2] =

abc
2

,

we get

a3 + b3 + c3 − 3abc = (a + b + c)
abc
2

,

hence
a3 + b3 + c3 =

abc
2

(a + b + c + 6),

and since
abc
2

is an integer, the conclusion follows.

Example 1.13. Prove that

3
√

45 + 29
√

2 +
3
√

45− 29
√

2

is a rational number.

Solution. Let a = 3
√

45 + 29
√

2 + 3
√

45− 29
√

2. Because
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a− 3
√

45 + 29
√

2− 3
√

45− 29
√

2 = 0,

we have

a3 − (45 + 29
√

2)− (45− 29
√

2) = 3a 3
√
(45 + 29

√
2)(45− 29

√
2),

which is equivalent to
a3 − 21a− 90 = 0

or
(a− 6)(a2 + 6a + 15) = 0.

The equation a2 + 6a + 15 = 0 has no real roots; hence

3
√

45 + 29
√

2 +
3
√

45− 29
√

2 = 6,

a rational number.

Example 1.14. Let r be a real number such that

3
√

r +
1
3
√

r
= 3.

Determine the value of r9 +
1
r9 .

Solution. From 3
√

r +
1
3
√

r
− 3 = 0, we obtain

r +
1
r
− 27 = 3 3

√
r

1
3
√

r
(−3) = −9,

which gives r +
1
r
= 18. Now, from r +

1
r
− 18 = 0, it follows that

r3 +
1
r3 − 183 = 3r

1
r
(−18) = −3 · 18,

hence
r +

1
r3 = 183 − 3 · 18.

Again, from r3 +
1
r3 − (183 − 3 · 18) = 0, we get

r9 − 1
r9 − (183 − 3 · 18)3 = −3(183 − 3 · 18),

therefore
r9 +

1
r9 = (183 − 3 · 18)3 − 3(183 − 3 · 18).
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Example 1.15. Let a,b, and c be the side lengths of a triangle. Prove that

3

√
a3 + b3 + c3 + 3abc

2
≥max{a,b, c}.

Solution. Assume, with no loss of generality, that a ≥ b ≥ c. We have to
prove that

3

√
a3 + b3 + c3 + 3abc

2
≥ a,

which is equivalent to

−a3 + b3 + c3 + 3abc ≥ 0.

Since
−a3 + b3 + c3 + 3abc = (−a)3 + b3 + c3 − 3(−a)bc,

the latter expression factors into

1
2
(−a + b + c)((a + b)2 + (a + c)2 + (b− c)2).

The conclusion follows by the triangle inequality b + c > a.

Example 1.16. Factorize (x− y)3 + (y− z)3 + (z− x)3.

Solution. Observe that if a + b + c = 0, then it follows from (1.2) that

a3 + b3 + c3 = 3abc.

Because
(x− y) + (y− z) + (z− x) = 0,

we obtain the factorization

(x− y)3 + (y− z)3 + (z− x)3 = 3(x− y)(y− z)(z− x).

Example 1.17. Prove the arithmetic-geometric mean inequality for three nonnega-
tive real numbers x,y,z.

Solution. We will show that

x + y + z
3

≥ 3
√

xyz,

with equality for x = y = z. Setting x = a3, y = b3, z = c3, we have
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x + y + z− 3 3
√

xyz = a3 + b3 + c3 − 3abc

=
1
2
(a + b + c)[(a− b)2 + (b− c)2 + (c− a)2].

As the right-hand side is nonnegative, we must have a + b + c ≥ 3 3
√

abc as
desired. Furthermore, equality occurs only when the right-hand side of our
relation is zero, namely, when x = y = z, which is equivalent to a = b = c.

Example 1.18. Show that 3
√

2 +
√

5 + 3
√

2−
√

5 is a rational number.

Solution. Set x =
3
√

2 +
√

5, y =
3
√

2−
√

5, z = −1. Then we have

x3 + y3 + z3 − 3xyz = 2 +
√

5 + 2−
√

5− 1− 3(−1) 3
√
−1 = 0.

Hence
(x + y + z)[(x− y)2 + (y− z)2 + (z− x)2] = 0.

As x 6= y 6= z, we must have

(x− y)2 + (y− z)2 + (z− x)2 > 0.

Hence x + y + z = 0, x + y = 1 as desired.

Example 1.19. If a,b, c ∈ Z satisfy a + b 3
√

2 + c 3
√

4 = 0, then a = b = c = 0.

Solution. Set x = a, y = b 3
√

2, z = 3
√

4. Then we obtain

x3 + y3 + z3 − 3xyz = (x + y + z)(x2 + y2 + z2 − xy− yz− zx) = 0.

Hence we have
a3 + 2b3 + 4c3 = 6abc.

Suppose that a′,b′, c′ are not all zero. Without loss of generality, suppose that
a,b, c are relatively prime. Taking our relation modulo 2, we find that a3 ≡ 0
(mod 2). Hence a = 2a′ for some integer a′. Then we have

8a′3 + 2b3 + 4c3 = 12a′bc.

Dividing through by 2, we get

4a′3 + b3 + 2c3 = 6a′bc.

Working modulo 2, we find that b = 2b′ for an integer b′, hence we may write

4a′3 + 8b′3 + 2c3 = 12a′b′c.

Dividing through by 2, we get
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2a′3 + 4b′3 + c3 = 6a′b′c.

Working modulo 2 a third time, we find that c = 2c′ for some integer c′.
Hence all of a,b, c are divisible by 2, contradicting our earlier assumption. It
follows that a = b = c = 0,

Example 1.20. Show that there is a unique point on the graph of the equation

x3 + 3xy + y3 = 1

forming the vertices of an equilateral triangle. Find the area of this triangle.

Solution. Set z = −1. Then we have

x3 + y3 + z3 − 3xyz = 0.

Hence either

x + y + z = 0 or (x = y)2 + (y− z)2 + (z− x)2 = 0.

In the former case, we have x + y = 1. In the latter case, we have x = y =−1.
Hence the graph of this equation consists of one line and a point not on that
line. Hence any equilateral triangle with vertices among the points of the
graph mush have one vertex at (−1,−1), and altitude from this vertex to
the point (1/2,1/2). Then in this case such an equilateral triangle must be
uniquely determined, and have area

(3
√

2/2)2/
√

3 = 3
√

3/2.

1.3 Working with quadratic polynomials

A quadratic polynomial is any polynomial of the form

f = ax2 + bx + c, (1.5)

with a,b, c complex numbers, a nonzero. The most important theoretical re-
sults regarding the quadratic polynomials are the following.

The zeros of f are the roots of the quadratic equation

ax2 + bx + c = 0. (1.6)

If ∆ = b2 − 4ac is its discriminant, then the zeros of f are given by

x1 =
−b +

√
∆

2a
, x2 =

−b−
√

∆
2a

. (1.7)
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If ∆ = 0, then the quadratic equation (1.6) has one double root

x1 = x2 = −
b

2a
.

From (1.7), we easily can deduce the formulas

x1 + x2 = −
b
a

, x1x2 =
c
a

,

called Viete’s relations. Further, we have the factorization

f = a(x− x1)(x− x2). (1.8)

Example 1.21. Factorize b4 − 2ab2 + a2 − b2 + 2b− 1.

Solution. Looking at E(a,b) = b4 − 2ab2 + a2 − b2 + 2b− 1 as to a quadratic
polynomial in a, we have

E(a,b) = a2 − 2b2a + b4 − b2 + 2b− 1.

The discriminant of equation E(a,b) = 0 is

∆ = 4b4 − 4(b4 − b2 + 2b− 1) = 4(b2 − 2b + 1) = [2(b− 1)]2.

The roots of E(a,b) = 0 are a1 = b2 + b− 1 and a2 = b2− b + 1, and it follows

E(a,b) = (a− b2 − b + 1)(a− b2 + b− 1) = (b2 + b− a− 1)(b2 − b− a + 1).

Remark. To factorize E(a,b) in linear factor on b over C, we can write

b2 + b− a− 1 =

(
b +

1
2

)2
−
(

a +
5
4

)
=

(
b +

1
2
+

√
a +

5
4

)(
b +

1
2
−
√

a +
5
4

)

b2 − b− a + 1 =

(
b− 1

2

)2
−
(

a− 3
4

)
=

(
b− 1

2
+

√
a− 3

4

)(
b− 1

2
−
√

a− 3
4

)
.

Example 1.22. Write the polynomial

P(x) = ax4 + bx3 + cx2 + dx + e

as a product of two quadratic polynomials, if a + d = b + e = c.
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Solution. We can write

P(x) = ax4 + bx3 + cx2 + (c− a)x + c− b

= ax4 − ax + bx3 − b + cx2 + cx + c

= ax(x3 − 1) + b(x3 − 1) + c(x2 + x + 1)

= (x2 + x + 1)[ax(x− 1) + b(x− 1) + c]

= (x2 + x + 1)[ax2 + (b− a)x + c− b].

Example 1.23. Solve the equation

x4 − (2m + 1)x3 + (m− 1)x2 + (2m2 + 1)x + m = 0,

where m is a real parameter.

Solution. For m = 0 the equation becomes

x4 − x3 − x2 + x = 0

and has roots x1 = 0, x2 = −1, x3 = x4 = 1.
If m 6= 0, we will solve the equation in terms of m. We have

2xm2 + (x2 − 2x3 + 1)m + x4 − x3 − x2 + x = 0

and

∆ = (x2 − 2x3 + 1)2 − 8x2(x3 − x2 − x + 1) = (2x3 − 3x2 + 1)2.

It follows that

m1 = x2 − x and m2 =
x2 − 1

2x
.

The initial equation becomes

[m− (x2 − x)]
[

m− x2 − 1
2x

]
= 0.

Hence

x2 − x−m = 0, with solutions x1,2 =
1±
√

1 + 4m
2

and
x2 − 2mx− 1 = 0, with solutions x3,4 = m±

√
1 + m2.

Example 1.24. Factorize

E(a,b, c) = a2(b + c) + b2(c + a) + c2(a + b) + 2abc.

Solution 1. Let us look at E(a,b, c) as at a quadratic polynomial in a and get
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E(a,b, c) = (b + c)a2 + (b2 + c2 + 2bc)a + b2c + c2b.

The discriminant of E(a,b, c) = 0 is

∆ = (b + c)4 − 4bc(b + c)2 = (b + c)2(b− c)2 = [(b + c)(b− c)]2,

and the roots are a1 = −c and a2 = −b. It follows

E(a,b, c) = (b + c)(a + b)(a + c).

Solution 2. As in previous solution, we have

E(a,b, c) = (b + c)a2 + (b + c)2a + bc(b + c),

hence

E(a,b, c) = (b + c)[a2 + (b + c)a + bc]
= (b + c)[a(a + b) + c(a + b)] = (b + c)(a + b)(a + c).

Example 1.25. Factorize x2(y− z) + y2(z− x) + z2(x− y).

Solution. Let E(x,y,z) = x2(y− z) + y2(z− x) + z2(x− y) and write

E(x,y,z) = (y− z)x2 + (z2 − y2)x + y2z− z2y.

The discriminant of E(x,y,z) = 0 is

∆ = (z2 − y2)2 − 4(y− z)(y2z− z2y) = (z2 − y2)2 − 4yz(y− z)2

= (y− z)2(y− z)2 = (y− z)4.

It follows x1 = y, x2 = z and we get

E(x,y,z) = (y− z)(x− y)(x− z).

Solution 2. We have

E(x,y,z) = (y− z)x2 + (z2 − y2)x + y2z− z2y

= (y− z)[x2 − (y + z)x + yz] = (y− z)(x2 − yx− zx + yz)
= (y− z)[x(x− y)− z(x− y)] = (y− z)(x− y)(x− z).

Example 1.26. Factorize

E(a,b) = 2a2 − b2 + ab− 5a + b + 2.

Solution. Looking at E(a,b) as a quadratic polynomial in a, we have

E(a,b) = 2a2 + (b− 5)a− b2 + b + 2.
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The discriminant of equation E(a,b) = 0 is

∆ = (b− 5)2 + 8(b2 − b− 2) = 9b2 − 18b + 9 = 9(b− 1)2.

Applying the formulas (1.7) we get the roots a1 =
b + 1

2
and a2 = −b + 2.

From the factorization (1.8) it follows

E(a,b) = 2
(

a− b + 1
2

)
(a + b− 2) = (2a− b− 1)(a + b− 2).

Example 1.27. Factorize

E(a,b, c) = 2a2 + 4b2 − c2 − 6ab + ac.

Solution. We proceed in a similar way as in previous example. Let us look
at E(a,b, c) as at a quadratic polynomial in a and get

E(a,b, c) = 2a2 − (6b− c)a + 4b2 − c2.

The discriminant of equation E(a,b, c) = 0 is

∆ = (6b− c)2 − 8(4b2 − c2) = 4b2 − 12bc + 9c2 = (2b− 3c)2.

From formulas (1.7) we get the roots a1 = 2b− c and a2 =
2b + c

2
, hence we

obtain the factorization

E(a,b, c) = 2(a− 2b + c)
(

a− 2b + c
2

)
= (a− 2b + c)(2a− 2b− c).

Example 1.28. Factorize the polynomial

P = 2x4 + x3 + 3x2 + x + 2.

Solution. We can write

P = x2
[

2
(

x2 +
1
x2

)
+

(
x +

1
x

)
+ 3
]

.

If we denote x +
1
x
= y, then x2 +

1
x2 = y2 − 2 and we get

P = x2(2y2 + y− 1) = x2(y2 − 1 + y2 + y) = x2[(y− 1)(y + 1) + y(y + 1)]

= x2(y + 1)(2y− 1) = x2
(

x +
1
x
+ 1
)(

2x +
2
x
− 1
)

= (x2 + x + 1)(2x2 − x + 2).
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To factorize P into linear factors we solve the quadratic equations

x2 + x + 1 = 0 and 2x2 − x + 2 = 0,

and use (1.8). It follows

P=

(
x−−1 + i

√
3

2

)(
x− −1− i

√
3

2

)(
x− 1 + i

√
15

4

)(
x− 1− i

√
15

4

)
.

Example 1.29. Factorize

E(a,b, c) = 2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4).

Solution. Consider E(a,b, c) a as polynomial in a, and get

E(a,b, c) = −a4 + 2(b2 + c2)a2 − (b2 − c2)2.

In order to solve the equation E(a,b, c) = 0, we denote a2 = x, and get the
discriminant

∆ = 4(b2 + c2)2 − 4(b2 − c2)2 = 16b2c2.

It follows the roots

x1 = b2 + c2 + 2bc = (b + c)2

x2 = b2 + c2 − 2bc = (b− c)2.

Hence, we obtain the factorization

E(a,b, c) = −(x− x1)(x− x2) = −[a2 − (b + c)2][a2 − (b− c)2]

= −(a + b + c)(a− b− c)(a + b− c)(a + c− b)
= (a + b + c)(−a + b + c)(a− b + c)(a + b− c).

Remark. If a,b, c are the side lengths of a triangle, then s =
1
2
(a + b + c) is

the semiperimeter and the above formula becomes

E(a,b, c) = 16K2,

where K is the area of the triangle.

Alternative solution. We can write

E(a,b, c) = 4b2c2 − (−a2 + b2 + c2)2 = [(b + c)2 − a2][a2 − (b− c)2]

= (a + b + c)(−a + b + c)(a− b + c)(a + c− b).
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Example 1.30. Factorize

E(a,b, c) = a2(b + c) + b2(c + a) + c2(a + b) + 3abc.

Solution. Looking to E(a,b, c) as to a quadratic polynomial in a, we have

E(a,b, c) = (b + c)a2 + (b2 + c2 + 3bc)a + bc(b + c).

The discriminant to the equation E(a,b, c) = 0 is

∆ = (b2 + c2 + 3bc)2 − 4bc(b + c)2 = [(b + c)2 + bc]2 − 4bc(b + c)2

=
[
(b + c)2 − bc

]2
= (b2 + bc + c2)2,

hence the roots to E(a,b, c) = 0 are

a1 =
−(b2 + c2 + 3bc) + (b2 + bc + c2)

2(b + c)
= − bc

b + c
,

a2 =
−(b2 + c2 + 3bc)− (b2 + bc + c2)

2(b + c)
= −(b + c).

It follows

E(a,b, c) = (b + c)(a− a1)(a− a2) = [(b + c)a + bc](a + b + c)
= (a + b + c)(ab + bc + ca).

Alternative solution. We can write

E(a,b, c) = a2(b + c) + abc + b2(c + a) + abc + c2(a + b) + abc
= a(ab + bc + ca) + b(ab + bc + ca) + c(ab + bc + ca)
= (ab + bc + ca)(a + b + c).

1.4 Polynomials in one variable

Let f = anXn + an−1Xn−1 + · · · + a1X + a0, an 6= 0 be a polynomial of de-
gree n. We shall solve problems involving polynomials with integer, ratio-
nal, real, or complex coefficients a0, a1, . . . , an. Denoting these sets of polyno-
mials by Z[X], Q[X], R[X], C[X], respectively, we have the inclusions:

Z[X] ⊂Q[X] ⊂R[X] ⊂ C[X].

Every set of polynomials has specific properties. When not mentioned oth-
erwise, the polynomial f is assumed to belong to the largest set, that is C[X].
The number x0 is a root of f if f (x0) = 0.
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Theorem 1.1. (Bézout) The number x0 is a root of polynomial f if and only if
X− x0 | f (X).

Proof. By the Euclidean division for polynomials one can write the identity
f (X) = (X − x0)g(X) + r, where r is a polynomial of degree zero, i.e., a
number. Passing to polynomial functions we obtain f (x0) = r. It follows that
we have f (x0) = 0 if and only if r = 0. �

A corollary of this simple result is the so-called remainder theorem: The
remainder of the division of the polynomial f by X− x0 is the evaluation of
the polynomial function in x0, namely f (x0).

Theorem 1.2. Let f be a polynomial and x1, x2, . . . , xm distinct numbers such that
f (x1) = f (x2) = . . . = f (xm) = 0. Then (X − x1)(X − x2) · · · (X − xm) | f (X).
Particulary, the number of roots of f is not greater than deg( f ).

Proof. From f (X) = (X − x1)g1(X) one obtains (x2 − x1)g1(x2) = 0. Since
x2 6= x1, one has g1(x2) = 0, which gives g1(X) = (X− x2)g2(X). In this way
we get f (X) = (X− x1)(X− x2)g2(X). We conclude by induction. �

Theorem 1.3. (Fundamental Theorem of Algebra) Every polynomial with complex
coefficients has a root in C.

The proof of this deep result is not elementary and will be skipped. As a
consequence of this theorem it follows, by induction, that every polynomial
with complex coefficients f can be decomposed in linear factors in C[X] as

f (X) = an(X− x1)(X− x2) · · · (X− xn),

where x1, x2, . . . , xn are the roots of f . Hence, only linear polynomials are
irreducible in C[X].

Recall that the following polynomials in n variables are called the funda-
mental symmetric polynomials of x1, x2, . . . , xn:

s1(x1, . . . , xn) = x1 + x2 + · · ·+ xn

s2(x1, . . . , xn) = ∑
1≤i<j≤n

xixj

...

sk(x1, . . . , xn) = ∑
1≤i1<i2<...<ik≤n

xi1 xi2 · · · xik

...
sn(x1, . . . , xn) = x1x2 · · · xn.
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The following relations connecting the fundamental symmetric polyno-
mials of the roots x1, x2, . . . , xn of polynomial f to the coefficients of f are
known as Vieta′s relations:

s1(x1, . . . , xn) = x1 + x2 + · · ·+ xn = − an−1

an

s2(x1, . . . , xn) = ∑
1≤i<j≤n

xixj =
an−2

an

sk(x1, . . . , xn) = ∑
1≤i1<i2<...<ik≤n

xi1 xi2 · · · xik = (−1)k an−k
an

sn(x1, . . . , xn) = x1x2 · · · xn = (−1)n a0

an
.

Let us now present a few example problems.

Example 1.31. Determine the polynomials P for which 16P(x2) = P(2x)2.

Solution 1. Setting x = 0 yields 16P(0) = P(0)2, i.e. P(0) = 0 or 16.

Case 1. Suppose that P(0) = 0. Then P(x) = xQ(x) for some polynomial Q
and 16x2Q(x2) = 4x2Q(2x)2, which reduces to 4Q(x2) = Q(2x)2. Now set-
ting 4Q(x) = R(x) gives us 16R(x2) = R(2x)2. Hence, P(x) = 1

4 xR(x), with
R satisfying the same relation as P.

Case 2. Suppose that P(0) = 16. Putting P(x) = xQ(x) + 16 in the relation we
obtain 4xQ(x2) = xQ(2x)2 + 16Q(2x); hence Q(0) = 0, i.e.Q(x) = xQ1(x) for
some polynomial Q1. Furthermore, x2Q1(x2) = x2Q1(2x)2 + 8Q1(2x), im-
plying that Q1(0) = 0, so Q1 too is divisible by x. Thus Q(x) = x2Q1(x). Now
assume that xn is the highest degree of x dividing Q, and Q(x) = xnR(x),
where R(0) 6= 0. Then R satisfies 4xn+1R(x2) = 22nxn+1R(2x)2 + 2n+4R(2x),
hence R(0) = 0, a contradiction. It follows that Q = 0 and P(x) = 16. We
conclude that P(x) = 16( 1

4 x)n for some positive integer n.

Solution 2. We use the following simple result.

Lemma 1.1. If P(x)2 is a polynomial in x2, then so is either P(x) or P(x)/x.

Proof. Let P(x) = anxn + an−1xn−1 + · · ·+ a0, an 6= 0. The coefficient of x2n−1

is 2anan−1, from which we get an−1 = 0. The coefficient of x2n−3 is 2anan−3,
hence an−3 = 0, and so on. After more steps, one obtains an−2k−1 = 0 for
k = 0,1,2, . . ., i.e. P(x) = anxn + an−2xn−2 + an−4xn−4 + · · · . �

Since P(x)2 = 16P( x2

4 ) is a polynomial in x2, we have P(x) = Q(x2) or
P(x) = xQ(x2). In the former case we get 16Q(x4) = Q(4x2)2 and there-
fore 16Q(x2) = Q(4x)2; in the latter case we similarly get 4Q(x2) = Q(4x)2.
In either case, Q(x) = R(x2) or Q(x) = xR(x2) for some polynomial R, so
P(x) = xiR(x4) for some i ∈ {0,1,2,3}. Proceeding in this way we find that
P(x) = xiS(x2k

) for each positive integer k and some i ∈ {0,1, . . . ,2k}.
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Now it suffices to take k with 2k > deg P and to conclude that S must be
constant. Thus P(x) = cxi for some constant c. A simple verification gives us

the general solution P(x) = 16
(

1
4 x
)n

for some positive integer n.

Example 1.32. Find all polynomials P with P(x)2 + P
(

1
x

)2
= P(x2)P

(
1
x2

)
.

Solution. By Lemma 1.1, there is a polynomial Q with P(x) = Q(x2) or
P(x) = xQ(x2). In the former case Q(x2)2 + Q

(
1
x2

)
= Q(x4)Q

(
1
x4

)
, hence

Q(x)2 + Q
(

1
x

)
= Q(x2)Q

(
1
x2

)
(which is precisely the relation fulfilled by

P), whereas in the latter case (similarly)

xQ(x)2 +
1
x

Q
(

1
x

)2
= Q(x2)Q

(
1
x

)
which is impossible for the left and right hand side have odd and even de-
grees, respectively. We conclude that P(x) = Q(x2), where Q is also a solu-
tion of the considered polynomial equation. Considering the solution of the
least degree we find that P.

Example 1.33. Find the non-linear polynomials P and Q with the property

P(Q(x)) = (x− 1)(x− 2) · · · (x− 15).

Solution. Suppose there exist such polynomials. Then deg P · deg Q = 15,
so deg P = k ∈ {3,5}. Putting P(x) = c(x − a1) · · · (x − ak) we deduce that
c(Q(x)− a1) · · · (Q(x)− ak) = (x − 1)(x − 2) · · · (x − 15). Thus the roots of
polynomial Q(x) − ai are distinct and contained the set {1,2, . . . ,15}. All
these polynomials mutually differ at the last coefficient only. Now, inves-
tigating parity of the remaining (three or five) coefficients we conclude that
each of them has the equally many odd roots. This is impossible, since the
total number of odd roots is 8, not divisible by 3 or 5.

Example 1.34. Determine all the polynomials P with P(x)2 − 2 = 2P(2x2 − 1).

Solution. Denoting P(1) = a, we have a2 − 2a − 2 = 0. By substituting
P(x) = (x− 1)P1(x) + a in the initial relation and simplifying yields the re-
lation (x − 1)P1(x)2 + 2aP1(x) = 4(x + 1)P1(2x2 − 1). For x = 1 we have
2aP1(1) = 8P1(1), which (as a 6= 4) gives P1(1) = 0, i.e., P1(x) = (x− 1)P2(x),
hence P(x) = (x − 1)2P2(x) + a. Suppose that P(x) = (x − 1)nQ(x) + a,
where Q(1) 6= 0. Substituting in the initial relation and simplifying yields
(x− 1)2nQ(x)2 + 2aQ(x) = 2(2x + 2)nQ(2x2− 1), giving us Q(1) = 0, a con-
tradiction. It follows that P(x) = a.
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Example 1.35. Determine all polynomials P with P(x)2 − 1 = 4P(x2 − 4x + 1).

Solution. Suppose that P is not constant. Fixing deg P = n and comparing
coefficients of both sides we deduce that the coefficients of polynomial P
must be rational. On the other hand, setting x = a with a = a2 − 4a + 1, that
is, a = 5±

√
21

2 , we obtain P(a) = b, where b2 − 4b − 1 = 0, i.e. b = 2±
√

5.
However, this is impossible because P(a) must have the form p + q

√
21 for

some p,q ∈Q, as the coefficients of P are rational. Hence, P(x) is constant.

Example 1.36. Identify all the polynomials P which satisfy the property P(x2 +
1) = P(x)2 + 1 for all x.

Solution. By Lemma 1.1, there is a polynomial Q such that P(x) = Q(x2 + 1)
or P(x) = xQ(x2 + 1). Then Q((x2 + 1)2 + 1) = Q(x2 + 1)2 − 1, from where
(x2 + 1)Q((x2 + 1)2 + 1) = x2Q(x2 + 1)2 + 1, respectively. Taking x2 + 1 = y
yields Q(y2 + 1) = Q(y)2 + 1 and yQ(y2 + 1) = (y − 1)Q(y)2 + 1, respec-
tively. Assume that yQ(y2 + 1) = (y− 1)Q(y)2 + 1 and set y = 1 we to obtain
Q(2) = 1. Note that, if a 6= 0 and Q(a) = 1, then also aQ(a2 + 1) = (a− 1) + 1
and hence Q(a2 + 1) = 1. We thus obtain an infinite sequence of points where
Q is 1, namely the sequence given by a0 = 2 and an+1 = a2

n + 1. Therefore
Q = 1. It follows that if Q 6= 1, then P(x) = Q(x2 + 1). Now we can easily
list all solutions: these are the polynomials of the form T(T(· · · (T(x)) · · · )),
where T(x) = x2 + 1.

Example 1.37. If a polynomial P with real coefficients satisfies for all x

P(cos x) = P(sin x),

prove that there exists a polynomial Q such that for all x, P(x) = Q(x4 − x2).

Solution. By the hypothesis we haveP(−sin x) = P(sin x), so P(−t) = P(t)
for infinitely many t; hence the polynomials P(x) and P(−x) coincide.
Therefore P(x) = S(x2) for some polynomial S. Now S(cos2 x) = S(sin2 x)
for all x, so S(1− t) = S(t) for infinitely many t, hence S(x) = S(1− x). This
is equivalent to R(x− 1

2 ) = R( 1
2 − x), i.e. R(y) = R(−y), where R is defined

by S(x) = R(x− 1
2 ). Now R(x) = T(x2) for some polynomial T, and finally,

P(x) = S(x2) = R(x2 − 1
2 ) = T(x4 − x2 + 1

4 ) = Q(x4 − x2) for some polyno-
mial Q.

Example 1.38. Let f be a quadratic polynomial. Prove that there exist quadratic
polynomials g and h such that f (x) f (x + 1) = g(h(x)).

Solution. Let f (x) = a(x− r)(x− s). Since

f (x) f (x + 1) = a2{[x2− (r + s− 1)x + rs]− r}{[x2− (r + s− 1)x + rs]− s},

we are done by setting g(x) = a2(x− r)(x− s), h(x) = x2− (r + s− 1)x + rs.
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Example 1.39. Prove that any polynomial with real coefficients is the difference of
some two increasing polynomial functions (over the reals).

Solution. Let P(x) = a0 + a1X + · · ·+ anxn. Then

|P′(x)| = |a1 + 2a2x + · · ·+ nanxn−1| ≤ |a1|+ 2|a2||x|+ · · ·+ n|an||xn−1|
< M(1 + |x|+ · · ·+ |x|n−1),

where M > max(|a1|,2|a2|,n|an|). Note that if |x| ≤ 1 then 1 + |x| + · · · +
|x|n−1 ≤ n, and if |x| > 1 then 1 + |x|+ · · ·+ |x|n−1 < nx2n. Hence, for any
real number x, we have |P′(x)| < Mn(1 + x2n). Consider the polynomials

P1(x) = P(x) + Mn(x + x2n+1), P2(x) = Mn(x + x2n+1).

We have P(x) = P1(x)− P2(x). Also, P1 and P2 are increasing functions, as

P′1(x) = P′(x) + Mn(1 + (2n + 1)x2n) > P′(x) + Mn(1 + x2n) > 0

and P2(x) = Mn((1 + (2n + 1)x2n) > 0 for any x ∈R.

Example 1.40. Prove that if the polynomials P, Q ∈R[X] have a real root each and
for every x ∈R

P(1 + x + Q(x)2) = Q(1 + x + P(x)2),

then P = Q.

Solution. Note that there exists x = a for which P(a)2 = Q(a)2. This follows
from the fact that, if p and q are the respective real roots of P and Q, then
P(p)2 − Q(p)2 ≤ 0 ≤ P(q)2 − Q(q)2, and moreover the function P2 − Q2 is
continuous. Now P(b) = Q(b) for b = 1+ a+ P(a)2. Taking a to be the largest
real number for which P(a) = Q(a) leads to an immediate contradiction.

Example 1.41. Prove that not all zeros of xn + 2nxn−1 + 2n2xn−2 + · · · are real.

Solution. Suppose that all its zeros x1, x2, . . . , xn are real. They satisfy

n

∑
i=1

xi = −2n,∑
i<j

xixj = 2n2.

However, by the mean inequality we have

2n2 = ∑
i<j

xixj =
1
2

(
n

∑
i=1

xi

)2

− 1
2

n

∑
i=1

x2
i ≤

n− 1
2n

(
n

∑
i=1

xi

)2

= 2n(n− 1),

a contradiction.
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Example 1.42. Find all the polynomials anxn + an−1xn−1 + · · ·+ a1x + a0 such
that aj ∈ {−1,1}, j = 0,1, . . . ,n, whose all roots are real.

Solution. Let x1, . . . , xn be the roots of the given polynomial. Then

x2
1 + x2

2 + · · ·+ x2
n =

(
n

∑
i=1

xi

)2

− 2

(
∑
i<j

xixj

)
= a2

n−1 − 2an−2 ≤ 3.

By the mean inequality, the second equality implies x2
1 + · · ·+ x2

n ≥ n, hence
n ≤ 3. The case n = 3 is only possible if x1, x2, x3 = ±1. Now we can easily
find all solutions: x± 1, x2 ± x− 1, x3 − x± (x2 − 1).

Example 1.43. Solve in the real numbers the system of equations
x + y + z = 4
x2 + y2 + z2 = 14
x3 + y3 + z3 = 34

.

Solution. Consider the monic polynomial

P(t) = t3 + at2 + bt + c,

with roots x,y,z. Because x + y + z = 4, it follows that a = −4, hence

P(t) = t3 − 4t2 + bt + c.

We have
x2 + y2 + z2 = (x + y + z)2 − 2(xy + xz + yz),

from where it follows that b = xy + xz + yz = 1. The numbers x,y,z are the
roots of P, thus

x3 − 4x2 + x + c = 0,

y3 − 4y2 + y + c = 0,

z3 − 4z2 + z + c = 0.

Adding these equalities and using the system, we obtain c = 6, hence

P(t) = t3 − 4t2 + t + 6.

We observe that t1 = −1 is a root, so P factors as

P(t) = (t + 1)(t2 − 5t + 6),

the other two roots being t2 = 2 and t3 = 3. It follows that the solutions of
the system are the triple (−1,2,3) and all of its permutations.
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Example 1.44. Let x1, x2, . . . , xn be the roots of equation

xn + 2xn−1 + 3xn−2 + · · ·+ nx + n + 1 = 0.

Compute

n

∑
k=1

xn+1
k − 1
xk − 1

.

Solution. We can write the equation in the following equivalent form

xn+1 − 1
x− 1

+
xn − 1
x− 1

+ · · ·+ x2 − 1
x− 1

=
x− 1
x− 1

= 0, x 6= 1,

that is

1
x− 1

[xn+1 + xn + · · ·+ x2 + x− (n + 1)] = 0, x 6= 1.

We get
1

x− 1

[
x · xn+1 − 1

x− 1
− (n + 1)

]
= 0, x 6= 1.

It follows that xk satisfies the relation

xk ·
xn+1

k − 1
xk − 1

− (n + 1) = 0, k = 1,2, . . . ,n

hence
xn+1

k − 1
xk − 1

=
n + 1

xk
, k = 1,2, . . . ,n.

Then, we have
n

∑
k=1

xn+1
k − 1
xk − 1

= (n + 1)
n

∑
k=1

1
xk

.

Note that
1
x1

,
1
x2

, . . . ,
1
xn

are the roots of the equation

(n + 1)yn + nyn−1 + · · ·+ 2y + 1 = 0,

hence we have
1
x1

+
1
x2

+ · · ·+ 1
xn

= − n
n + 1

,

and we get
n

∑
k=1

xn+1
k − 1
xk − 1

= (n + 1)
(
− n

n + 1

)
= −n.
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Example 1.45. Find the roots of the polynomial f (X) = X10 − 10X9 + 45X8 +
a7X7 + · · ·+ a1X + a0, knowing that all roots are real numbers.

Solution. We have ∑10
i=1 xi = 10 and ∑ xixj = 45. Compute

10

∑
i=1

(xi − 1)2 =
10

∑
i=1

x2
i − 2

10

∑
i=1

xi + 10 = 0.

Since all roots are real, it follows that x1 = · · · = x10 = 1.

Example 1.46. Solve the system{
x + y + z = 1
xyz = 1

for x, y and z complex numbers of modulus 1.

Solution. Since x = 1
x , from the first equation we have that

1
x
+

1
y
+

1
z
= 1,

which gives xy + yz + zx = 1. Hence, x,y,z are the roots of the polynomial

T3 − T2 + T − 1 = 0.

It is easy to see that the latter has the roots 1, i,−i.

Example 1.47. Solve the systems of equations:
(a) 

x + y + z = 4
x2 + y2 + z2 = 14
x3 + y3 + z3 = 34.

(b) 
x3 − 9y2 + 27y− 27 = 0
y3 − 9z2 + 27z− 27 = 0
z3 − 9x2 + 27x− 27 = 0.

Solution. (a) Consider the cubic equation with roots x,y,z. This is

(T − x)(T − y)(T − z) = T3 + aT2 + bT + c = 0,

where the coefficients a,b, c are given by Viète formulas:
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a = −(x + y + z) = −4

b = xy + yz + zx = (1/2)[(x + y + z)2 − (x2 + y2 + z2) = 1
c = −xyz

=
1
3

[
(x3 + y3 + z3)− (x + y + z)3 + 3(x + y + z)(xy + yz + zx)

]
= 6.

One obtains the equation T3 − 4T2 + T + 6 = 0, which has the roots −1, 2,
and 3. Any permutation of this set is a solution of the system.

(b) Sum the equations to obtain

(x− 3)3 + (y− 3)3 + (z− 3)3 = 0.

From the first equation we have

x3 = 9(y2 − 3y + 3)

giving that x ≥ 0. Similarly, y ≥ 0 and z ≥ 0. Assume that x > 3. From the
first equation we get x3 − 27 = 9y(y− 3), yielding that y > 3. Similarly one
obtains z > 3. This gives a contradiction with the sum of cubes which is zero.
Analogously, x < 3 gives a contradiction. So, the solution is x = y = z = 3.

Example 1.48. Prove that the set of real numbers x for which ∑70
k=1

k
x−k ≥

5
4 is a

disjoint union of intervals. Compute the sum of the lengths of all these intervals.

Solution. Consider the function f : R \ {1,2, . . . ,70} −→R given by

f (x) =
70

∑
k=1

k
x− k

.

This function is decreasing on all intervals in its domain. The limit towards
the points x = 1,2, . . . ,70 is −∞ from the left and +∞ from the right. The
inequality therefore holds on the union of intervals

70⋃
k=1

(k, xk]

where xk are the points in which f (xk) =
5
4 . The equation f (x) = 5

4 is equiv-
alent to the polynomial equation

5
70

∏
k=1

(x− k)− 4
70

∑
k=1

k(x− 1) . . . (x− k + 1)(x− k− 1) . . . (x− 70) = 0.

We are asked to find the sum of length of intervals which is
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l =
70

∑
k=1

(xk − k) =
70

∑
k=1

xk −
70

∑
k=1

k.

So we have to compute only the sum of roots. The equation has degree 70.
Using Viète formulas we obtain:

l =
1
5
(5∑ k + 4∑ k)−∑ k =

4
5 ∑ k = 1988.

Example 1.49. Let a, b, c, d, e and f be positive integers. Suppose that the sum
S = a+ b+ c+ d+ e+ f divides both ab+ bc+ ca− de− e f − f d and abc+ de f .
Show that S is a composite number.

Solution. Consider the quadratic polynomial

P(X) = (X + a)(X + b)(X + c)− (X− d)(X− e)(X− f ) =

(a + b + c + d + e + f )X2 + (ab + bc + ca− de− e f − f d)X + abc + de f .

Its coefficients are all integers divisible by S. It follows that S|P(d) = (d +
a)(d + b)(d + c). If S is prime number, then S divides one of the factors of
P(d), which is a contradiction.

Example 1.50. Let a,b, c,d be positive real numbers. Show that the following in-
equalities cannot hold simultaneously:

a + b < c + d,
(a + b)(c + d) < ab + cd,

(a + b)cd < (c + d)ab.

Solution. Consider the real polynomial

P(X) = (X− a)(X− b)(X + c)(X + d) = X4 + (−a− b + c + d)X3+

(ab + cd− ac− bc− ad− bd)X2 + (abc + abd− acd− bcd)X + abcd.

If we assume that all coefficients are positive, it follows that P(x) > 0 for all
x > 0. But this contradicts the fact that P has positive roots a,b. The conclu-
sion follows.

1.4.1 Chebyshev polynomials

Chebyshev polynomials Tn(x) are one of the most remarkable families of
polynomials, which appear in various branches of mathematics. We will dis-
cuss several simple but important properties of the Chebyshev polynomials.



30 1 Identities. Polynomials

We use the definition based on the fact that cosnx can be expressed as a poly-
nomial of cos x, i.e., there exists a polynomial Tn(x) such that Tn(x) = cosnt
for x = cos t. Indeed, the formula

cos(n + 1)t + cos(n− 1)t = 2cos tcosnt

shows that the polynomials Tn(x) recursively defined by the relation

Tn+1(x) = 2xTn(x)− Tn−1(x)

with the initial values T0(x) = 1 and T1(x) = x, possess the property re-
quired. These polynomials Tn(x) are called the Chebyshev polynomials. The
fact that Tn(x) = cosnt for x = cos t directly implies that |Tn(x)| ≤ 1 for
|x| ≤ 1. The above recurrence implies that

Tn(x) = 2n−1xn + a1xn−1 + · · ·+ an,

where a1, . . . , an are integers.
The most important property of Chebyshev polynomials was discovered

by Chebyshev himself. It consists of the following.

Theorem 1.4. Let Pn(x) = xn + · · · be a monic polynomial of degree n such that
|Pn(x)| ≤ 1

2n−1 for |x| ≤ 1. Then Pn(x) = Tn(x)
2n−1 , i.e., the polynomial Tn(x)

2n−1 is the
monic polynomial of degree n with the least deviation from zero on [−1,1].

Proof. We use only one property of the polynomial, namely, the fact that

Tn

(
cos

kπ

n

)
= coskπ = (−1)k,k = 0,1, . . . ,n.

Consider the polynomial

Q(x) =
Tn(x)
2n−1 − Pn(x).

Its degree does not exceed n− 1 as the leading terms of Tn(x)
2n−1 and Pn(x) are

equal. Since |Pn(x)| ≤ 1
2n−1 for |x| ≤ 1, at the point xk = cos kπ

n the sign of
Q(xk) coincides with the sign of Tn(xk). Therefore, at the end points of each
segment [xk+1, xk], the polynomial Q(x) takes values of opposite signs, and
hence Q(x) has a root on each of these segments.

If Q(xk) = 0 we need a slightly more accurate arguments. In this case ei-
ther xk is a double root or within one of the segments [xk+1, xk] and [xk, xk−1]
there is one more root. This follows from the fact that the values Q(xk+1)
and Q(xk−1) have the same sign. The number of segments [xk+1, xk] is equal
to n, and hence the polynomial Q(x) has at least n roots. A polynomial of
degree not greater than n− 1 must be identically zero, i.e., Pn(x) = Tn(x)

2n−1 . �
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If z = cos t+ i sin t, then z+ z−1 = 2cos t and zn + z−n = 2cosnt. Therefore
Tn

(
z+z−1

2

)
= zn+z−n

2 . By this property we can prove the following statement.

Theorem 1.5. Let m =
⌊ n

2
⌋
. Then

Tn(x) =
m

∑
j=0

(
n
2j

)
xn−2j(x2 − 1)j.

Proof. Let x = z+z−1

2 and y = z−z−1

2 . Then y2 = x2 − 1 and

zn + z−n = (x + y)n + (x− y)n =
n

∑
i=0

(
n
i

)
(1 + (−1)i)xn−iyi

= 2
m

∑
j=0

(
n
2j

)
xn−2jy2j = 2

m

∑
j=0

(
n
2j

)
xn−2j(x2 − 1)j.

It remains to observe that Tn(x) = zn+z−n

2 . �

Corollary 1.1. Let p be an odd prime. Then Tp(x) ≡ T1(x) (mod p).

Proof. We write p = 2m + 1. Then Tp(x) = ∑m
j=0 (

p
2j)xn−2j(x2 − 1)j. If j > 0,

then ( p
2j) is divisible by p. So Tp(x) ≡ xp (mod p) ≡ x (mod p) = T1(x). �

For any pair of polynomials P and Q, define their composition naturally,
by setting (P ◦Q)(x) = P(Q(x)). The polynomials P and Q are said to com-
mute if P ◦Q = Q ◦ P, i.e., if P(Q(x)) = Q(P(x)).

Theorem 1.6. The polynomials Tn(x) and Tm(x) commute.

Proof. Let x = cos t. Then Tn(x) = cos(nt) = y and Tm(y) = cosm(nt), and
hence Tm(Tn(x)) = cosmnt. Similarly, Tn(Tm(x)) = cosmnt. Hence the iden-
tity Tn(Tm(x)) = Tm(Tn(x)) holds for |x| < 1, hence it holds for all x. �

Sometimes instead of Tn(x) it is convenient to consider the monic polyno-
mial Pn(x) = 2Tn(

x
2 ). The polynomials Pn(x) satisfy the recurrence relation

Pn+1(x) = xPn(x)− Pn−1(x).

Hence Pn(x) is a polynomial with integer coefficients. If z = cos t + i sin t,
then z + z−1 = 2cos t and zn + z−n = 2cosnt. Therefore

Pn(z + z−1) = 2Tn(cos t) = 2cosnt = zn + z−n,

i.e., the polynomial Pn(x) expresses zn + z−n via z + z−1. Using the polyno-
mials Pn we can prove another result.
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Theorem 1.7. If both α and cos(απ) are rational, then 2cos(απ) is an integer, i.e.,
cos(απ) = 0,± 1

2 or ±1.

Proof. Let α = m
n be an irreducible fraction. Set x0 = 2cos t, where t = απ.

Then Pn(x0) = 2cos(nt) = 2cos(nαπ) = 2cos(mπ) = ±2. Hence x0 is a root
of the integral polynomial Pn(x)∓ 2 = xn + b1xn−1 + · · ·+ bn.

Let x0 = 2cos(απ) = p
q be an irreducible fraction. Then it follows that

pn + b1 pn−1q + · · ·+ bnqn = 0, and hence pn is divisible by q. But p and q are
relatively prime, and so q = ±1, i.e., 2cos(απ) is an integer. �

In problems concerning extremal properties of polynomials, Chebyshev
polynomials play a very special role, as seen in the examples below.

Example 1.51. Find the maximal value of the expression a2 + b2 + c2 provided that
|ax2 + bx + c| ≤ 1 for all x ∈ [−1,1].

Solution. Define

A = f (1), B = f (0), C = f (−1).

Then we easily obtain

a =
A + C

2
− B, b =

A− C
2

, c = B.

Therefore, an immediate computation gives

a2 + b2 + c2 =
A2 + C2

2
+ 2B2 − B(A + C).

Since |A|, |B|, |C| ≤ 1, the last expression is clearly bounded above by 5 (use
the obvious estimate for each term of it). Thus, we shall have a2 + b2 + c2≤ 5.
To see that it is optimal, simply take Chebyshev’s polynomial 2X2 − 1.

Example 1.52. Define F(a,b, c) = max
x∈[0,3]

|x3 − ax2 − bx − c|. What is the least

possible value of this function over R3?

Solution. Let Pa,b,c(X) = X3 − aX2 − bX− c. The idea is to map the interval
[0,3] to [−1,1] via an affine map and then to use Chebyshev’s least deviation
theorem in order to bound from below maxx∈[0,3] |Pa,b,c(x)|. Note that

max
x∈[0,3]

|Pa,b,c(x)| = max
x∈[−1,1]

∣∣∣∣Pa,b,c

(
3(x + 1)

2

)∣∣∣∣ .
Since Pa,b,c

(
3(X+1)

2

)
is a polynomial of third degree with leading coefficient

27/8, Chebyshev’s theorem gives us the estimate
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max
x∈[−1,1]

|Pa,b,c

(
3(x + 1)

2

)
| ≥ 27

32
,

which is optimal. Bring this to [0,3] we get F(a,b, c) ≥ 27
32 which is optimal,

since equality holds for Pa,b,c =
27
32 T3(2X/3− 1), where T3(X) = 4X3 − 3X.

Example 1.53. Let a,b, c,d ∈R with |ax3 + bx2 + cx + d| ≤ 1 for all x ∈ [−1,1].
Prove that

|a|+ |b|+ |c|+ |d| ≤ 7.

Solution 1. Let us look at the values of P(X) = aX3 + bX2 + cX + d at
−1,−1/2,1/2,1, which are the classical interpolation points in Chebyshev’s
theorem (for n = 3). Writing

A = f (1), B = f (1/2), C = f (−1/2), D = f (−1),

we can immediately express a,b, c,d in terms of A, B,C, D. An easy compu-
tation gives

a =
2
3
(A− D)− 4

3
(B− C), b =

2
3
(A− B)− 2

3
(C− D),

and

c = −1
6
(A + D) +

4
3
(B− C), d = −1

6
(A + D) +

2
3
(B + C).

This shows that f (a,b, c,d) = |a|+ |b|+ |c|+ |d| is actually a convex function
of A, B,C, D ∈ [−1,1]. Thus it attains its maximum when all A, B,C, D are
equal to 1 or −1. Now, it is simply a tedious matter to check that in all cases
the expression is at most 7. We have equality for the Chebyshev polynomial
(or its opposite) of degree 3.

Solution 2. We look again at the points −1,−1/2,1/2,1, but in a slightly
different way. Let P(X) = aX3 + bX2 + cX + d. Since −P(X) and P(−X)
also satisfy the same properties as P, we may assume that a,b ≥ 0. The rest
of the proof is a discussion following the signs of c,d. Namely, if c≥ 0,d≥ 0,
we have

|a|+ |b|+ |c|+ |d| = a + b + c + d = P(1) ≤ 1.

For c ≥ 0,d < 0 we obtain

|a|+ |b|+ |c|+ |d| = a + b + c− d = P(1)− 2P(0) ≤ 3,

while for c < 0,d ≥ 0 we can write

|a|+ |b|+ |c|+ |d| = a + b− c + d

=
4
3

P(1)− 1
3

P(−1)− 8
3

P
(

1
2

)
+

8
3

P
(
−1

2

)
≤ 7.
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Finally, when c < 0,d < 0 we get

|a|+ |b|+ |c|+ |d| = a + b− c− d =
5
3

P(1)− 4P
(
−1

2

)
+

4
3

P
(

1
2

)
≤ 7.

In all cases, the inequality is proved, finishing the solution.

1.4.2 Lagrange interpolating polynomial

A polynomial of degree n is uniquely determined, given its values at n + 1
points. So, suppose that P is an n-th degree polynomial and that P(xi) = yi
in different points x0, x1, . . . , xn. There exist unique polynomials E0, E1, . . . , En
of degree n such that Ei(xi) = 1 and Ei(xj) = 0 for j 6= i. Then the polyno-
mial P(x) = y0E0(x) + y1E1(x) + · · · + ynEn(x) has the desired properties.
Indeed, P(xi) = ∑n

j=1 yjEj(xi) = yiEi(xi) = yi. It remains to find the polyno-
mials E0, . . . , En. A polynomial that vanishes at the n points xj, j 6= i, is divis-

ible by ∏i 6=j = (x− xj), from which we easily obtain Ei(x) = ∏i 6=j
x−xj
xi−xj

.

Theorem 1.8. (Lagrange interpolating polynomial). For given numbers y0, . . . ,yn
and distinct x0, . . . , xn there is a unique polynomial P of degree n such that P(xi) =
yi for i = 0,1, . . . ,n. This polynomial is given by the formula

P(x) =
n

∑
i=0

yi ∏
i 6=j

x− xj

xi − xj
.

It is often useful to consider the finite difference of polynomial P defined
by P[1](x) = P(x + 1) − P(x), which has the degree smaller by 1 than for
P. Further, one can define the k-th finite difference, P[k] = (P[k−1])[1], whose
degree is n− k, (assuming that deg P = n). Using simple induction one can
deduce the general formula

P[k] =
k

∑
i=0

(−1)k−i
(

k
i

)
P(x + i).

In particular, P[n] is constant and P[n+1] = 0, one has the following result.

Theorem 1.9. The following relation holds

P(x + n + 1) =
n

∑
i=0

(−1)n−i
(

n + 1
i

)
P(x + i).

We now present some illustrative examples.
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Example 1.54. Find the cubic polynomial Q such that Q(i) = 2i for i = 0,1,2,3.

Solution. We have

Q(x) =
(x− 11)(x− 2)(x− 3)

−6
+ 2

x(x− 2)(x− 3)
2

+ 4
x(x− 1)(x− 3)

−2

+ 8
x(x− 1)(x− 2)

6
=

1
6
(x3 + 5x + 6).

Example 1.55. Considering the polynomial P of degree n taking the value 1 in
points 0,2,4, . . . ,2n, prove the combinatorial identity:

n+1

∑
i=1

(−1)n−i

(2i + 1)i!(n− i)!
=

2n

(2n + 1)!!
.

Solution. P(x) is of course identically equal to 1, so P(1) = P(−1) = 1. But
if we apply the Lagrange interpolating polynomial, here is what we get:

P(1) =
n

∑
i=0

∏
j 6=i

1− 2i
2j− 2i

=
n

∑
i=0

∏
j 6=i

−1− 2j
2j− 2i

=
(2n + 1)!!

2n

n+1

∑
i=1

(−1)n−i

(2i + 1)i!(n− i)!
.

Example 1.56. A polynomial p of degree n satisfies p(k) = 2k for all 0 ≤ k ≤ n.
Find its value at n + 1.

Solution. Applying Lagrange’s interpolation formula, we obtain

p(n + 1) =
n

∑
k=0

p(k) ·∏
j 6=k

n + 1− j
k− j

=
n

∑
k=0

(
n + 1

k

)
(−1)n−k2k = 2n+1 − 1.

Remark. There is also a neat solution without the use of interpolation for-
mula: consider the polynomial

f (X) =

(
X
0

)
+

(
X
1

)
+ · · ·+

(
X
n

)
.

It has degree n and satisfies f (k) = 2k for all 0 ≤ k ≤ n, by the binomial
formula. Thus, we must have f = p and then clearly p(n + 1) = 2n+1 − 1.
Even though very neat, this solution is not so conceptual.

Example 1.57. A polynomial f of degree n satisfies

f (k) =
1

(n+1
k )
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for all 0≤ k ≤ n. Find f (n + 1).

Solution. This is also immediate using Lagrange’s interpolation formula:

f (n + 1) =
n

∑
k=0

f (k)∏
j 6=k

n + 1− j
k− j

=
n

∑
k=0

1

(n+1
k )
· (−1)n−k

(
n + 1

k

)

=
n

∑
k=0

(−1)n−k =
1− (−1)n+1

2
.

Example 1.58. Prove that for any real number a the following identity holds

n

∑
k=0

(−1)k
(

n
k

)
(a− k)n = n!.

Solution.Using Lagrange interpolation, we have

P(X) =
n

∑
k=0

P(k)(−1)n−k 1
n!

(
n
k

)
∏
j 6=k

(X− j)

for any polynomial P of degree at most n. If we identify the leading coeffi-
cients, we obtain that the leading coefficient of P(X) is

1
n!

n

∑
k=0

(−1)n−k
(

n
k

)
P(k).

Applying this to the polynomial P(X) = (a−X)n yields the desired identity.

Example 1.59. Prove that

n

∑
k=0

xn+1
k

∏
j 6=k

(xk − xj)
=

n

∑
k=0

xk

and compute
n

∑
k=0

xn+2
k

∏
j 6=k

(xk − xj)
.

Solution. The method below shows how to compute all sums of the form

n

∑
k=0

xn+p
k

∏
j 6=k

(xk − xj)
.
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The idea is to consider the remainder f (X) of Xn+p when divided by
∏n

j=0(X − xj) and to apply Lagrange’s interpolation formula to it. Identi-

fying leading coefficients and using that f (xj) = xn+p
j , we deduce that

n

∑
k=0

xn+p
k

∏
j 6=k

(xk − xj)

is precisely the leading coefficient of f (X). For p = 1 we clearly have

f (X) = Xn+1 −
n

∏
j=0

(X− xj),

so its leading coefficient is ∑n
i=0 xi. On the other hand, for p = 2 we have

Xn+2 = Q(X)
n

∏
j=0

(X− xj) + f (X)

for some polynomial Q. Comparing degrees and leading coefficients shows
that Q(X) = X + c for some constant c. To determine c, we impose the con-
dition that deg( f ) ≤ n. This implies that c = ∑n

j=0 xj. Then, it is easy to find
the coefficient of Xn in f (X) and the answer is (∑n

j=0 xj)
2 − ∑0≤i<j≤n xixj.

We leave as a nice exercise for the reader to prove that for all p we have

n

∑
k=0

xn+p
k

∏j 6=k(xk − xj)
= ∑

a1+a2+···+an=p
xa1

1 xa2
2 · · · x

an
n ,

where in the sum above the ai are nonnegative integers.
The following problems deal with extremal properties of polynomials.

The underlying philosophy is that imposing conditions on the values of a
polynomial at sufficiently many points of an interval automatically imposes
conditions at all other values. Lagrange’s interpolation formula is a very
handy tool in such situations.

Example 1.60. Let a,b, c be real numbers with max{| f (±1)|, | f (0)|} ≤ 1 where
f (x) = ax2 + bx + c. Show that if |x| ≤ 1 then | f (x)| ≤ 5

4 and
∣∣∣x2 f

(
1
x

)∣∣∣ ≤ 2.

Solution. Using Lagrange interpolation, we can write

f (X) = f (0)(1− X2) + f (1)
X2 + X

2
+ f (−1)

X2 − X
2

.

We deduce that for all |x| ≤ 1 we have
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| f (x)| ≤ 1− x2 +
|x2 + x|

2
+
|x2 − x|

2
= 1− x2 + |x| ≤ 5

4
,

the last inequality being equivalent to (|x| − 1
2 )

2 ≥ 0. Similarly, we find that

|x2 f (1/x)| ≤ 1− x2 +
1 + x

2
+

1− x
2

= 2− x2 ≤ 2.

Remark. For third degree polynomials, Chebyshev’s theorem can be proved
using Lagrange’s interpolation formula: if f is a monic polynomial of third
degree, identifying leading coefficients in Lagrange’s formula yields

1 =
2 f (−1)

3
− 4 f (1/2)

3
+

4 f (−1/2)
3

− 2 f (−1)
3

.

This equality and the triangle inequality imply that maxx∈[−1,1] | f (x)| ≥ 1
4

for any such f , with equality when f (X) = X3 − 3
4 X.

Example 1.61. Let a,b, c,d ∈ R satisfying |ax3 + bx2 + cx + d| ≤ 1 for all val-
ues x ∈ [−1,1]. What is the maximal value of |c|? For which polynomials is the
maximum attained?

Solution. Choose distinct numbers x0, x1, x2, x3 and identify the coefficients
of X in Lagrange’s formula

aX3 + bX2 + cX + d =
3

∑
k=0

f (xk)∏
j 6=k

X− xj

xk − xj
.

We deduce that

c = ∑ f (x0)
x1x2 + x2x3 + x3x1

(x0 − x1)(x0 − x2)(x0 − x3)
,

so

|c| ≤∑
∣∣∣∣ x1x2 + x2x3 + x3x1

(x0 − x1)(x0 − x2)(x0 − x3)

∣∣∣∣ .
The problem is to find a 4-tuple (x0, x1, x2, x3) which minimizes the last ex-
pression. One may consider the points where |T3(x)| takes maximal value,
namely 1, on the interval [−1,1]. These are the points x0 =−1, x1 =− 1

2 , x2 =
1
2 and x3 = 1. It is easy to compute the last sum in this case and we find that
|c| ≤ 3. Since this value is attained for the polynomial T3(X) = 4X3− 3X, this
is the maximal value. Also, it is not difficult to check that equality appears
in the above chain of inequalities only for T3 and −T3.

Example 1.62. If a polynomial f ∈ R[X] of degree n satisfies | f (x)| ≤ 1 for all
x ∈ [0,1], then ∣∣∣∣ f (− 1

n

)∣∣∣∣ ≤ 2n+1 − 1.
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Solution. The idea is to use Lagrange’s interpolation formula at the points
k/n for 0 ≤ k ≤ n, since in this case all expressions have very nice closed
forms. Indeed, we have

f
(
−1
n

)
=

n

∑
k=0

f
(

k
n

)
∏
j 6=k

−(j + 1)
k− j

,

which shows that∣∣∣∣ f (−1
n

)∣∣∣∣ ≤ n

∑
k=0

∏
j 6=k

j + 1
|k− j| =

n

∑
k=0

(
n + 1
k + 1

)
= 2n+1 − 1.

Example 1.63. Let a ≥ 3 be a real number and let p be a real polynomial of degree
n. Prove that

max
i=0,1,...,n+1

|ai − p(i)| ≥ 1.

Solution. The crucial observation is that we have

n+1

∑
k=0

(−1)n−k
(

n + 1
k

)
p(k) = 0.

This is simply Lagrange’s interpolation formula written in a slightly changed
form. We deduce from this and the binomial formula that

(a− 1)n+1 =
n+1

∑
k=0

(−1)n−k
(

n + 1
k

)
(p(k)− ak).

Thus, if |p(k)− ak| < 1 for all 0≤ k ≤ n + 1, then we must have

|a− 1|n+1 <
n+1

∑
k=0

(
n + 1

k

)
= 2n+1,

contradicting the fact that a ≥ 3. This finishes the solution.

Remark. The identity

n+1

∑
k=0

(−1)n−k
(

n + 1
k

)
p(k) = 0

for polynomials of degree at most n is extremely useful. We proved it here as
a consequence of Lagrange’s interpolation formula, but it also follows from
the theory of finite differences. The point is that ∆p(X) = p(X + 1)− p(X)
has degree smaller than deg p, so that if one iterates ∆ deg p + 1 ≤ n + 1
times and applies it to p, one gets 0. But the evaluation at 0 of ∆n+1 p is
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n+1

∑
k=0

(−1)n−k
(

n + 1
k

)
p(k),

as an immediate induction argument shows.

Example 1.64. Let n ≥ 3 and f , g ∈R[X] be polynomials such that the points

( f (1), g(1)) , ( f (2), g(2)) , . . . , ( f (n), g(n))

are vertices of a regular n-gon (anticlockwise). Then max(deg f ,deg g) ≥ n− 1.

Solution. It is enough to prove that P(X) = f (X) + ig(X) has degree at least
n− 1. Clearly, we may assume that the regular n-gon has vertices z,z2, . . . ,zn

for z = e
2iπ
n (simply apply a translation and a homothety to reduce the gen-

eral case to this one). So, it remains to prove that if a polynomial P satisfies
P(i) = zi for all 1 ≤ i ≤ n, then deg P ≥ n− 1. Assume that this is not true.
Using Lagrange’s interpolation formula, we obtain

zn = P(n) =
n−1

∑
i=1

zi ·∏
j 6=i

n− j
i− j

=
n−1

∑
i=1

(
n− 1
i− 1

)
(−1)n−1−izi.

By the binomial formula and cancelling similar terms we get (1− z)n−1 = 0,
a contradiction.

Remark. There are many other approaches. The most efficient is the method
of finite differences, which yields

∆n−1P(1) =
n−1

∑
j=0

(−1)j
(

n− 1
j

)
P(n− j) = z(1− z)n−1 6= 0.

Another very neat proof considers the polynomial P(X + 1)− zP(X). It has
degree at most n − 2, it is clearly nonzero and vanishes at 1,2, . . . ,n − 1, a
contradiction.

1.4.3 Polynomial with integer coefficients

Consider a polynomial P(x) = anxn + · · ·+ a1x+ a0 with integer coefficients.
The difference P(x)− P(y) can be written in the form

an(xn − yn) + · · ·+ a2(x2 − y2) + a1(x− y),

in which all summands are multiples of polynomial x− y. This leads to the
simple though important arithmetic property of polynomials from Z[x]:
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Theorem 1.10. If P is a polynomial with integer coefficients, then P(a)− P(b) is
divisible by a− b for any distinct integers a and b. In particular, all integer roots of
P divide P(0).

There is a similar statement about rational roots of polynomial P ∈Z[x].

Theorem 1.11. If a rational number p/q (p,q ∈Z,q 6= 0,gcd(p,q) = 1) is a root
of an integral polynomial P(x) = anxn + · · ·+ a1x + a0, then p | a0 and q | an.

Proof. We have

qnP
(

p
q

)
= an pn + an−1 pn−1q + · · ·+ a0qn.

All summands but possibly the first are multiples of q, and all but possibly
the last are multiples of p, hence q | an pn and p | a0qn. �

Note that the polynomial that takes integer values at all integer points
does not necessarily have integer coefficients, as seen on the polynomial
x(x−1)

2 . The result of the following problem is very important and goes

back to Hilbert. This is why the polynomials X(X−1)···(X−n+1)
n! are also called

Hilbert polynomials.

Theorem 1.12. Let f be a polynomial with real coefficients. The following two as-
sertions are equivalent:

1◦ For any integer n one has f (n) ∈Z;
2◦ There exist integers n and a0, a1, a2, . . . , an such that

f (X) = a0 + a1X + a2
X(X− 1)

2
+ · · ·+ an

X(X− 1) · · · (X− n + 1)
n!

.

Proof. One implication follows from the fact that for all integers x and
all n ≥ 1, the number x(x − 1) · · · (x − n + 1) is a multiple of n!. This
follows from the fact that x(x − 1) · · · (x − n + 1) = n!(x

n) if x ≥ 1, while
x(x − 1) · · · (x − n + 1) = (−1)n(−x+n−1

n ) if x < 0. For the interesting im-
plication, the idea is that any polynomial f of degree n can be written

f (X) = a0 + a1X + a2
X(X− 1)

2
+ · · ·+ an

X(X− 1) · · · (X− n + 1)
n!

for suitable real numbers ai and that the condition that f maps integers to
integers forces all ai be integers.

To prove the first claim, it is enough to prove that we can find (for all i)
a0, . . . , ai such that f (X) − a0 − a1X − · · · − ai

X(X−1)···(X−i+1)
i! is a multiple

of X(X − 1) · · · (X − i). Choose a0 = f (0) and define inductively ai by the
relation

f (i) = a0 + a1

(
i
1

)
+ · · ·+ ai−1

(
i

i− 1

)
+ ai.
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Essentially by construction (or by an immediate induction), these ai sat-
isfy the desired conditions, since f (X)− a0 − a1X − . . .− ai

X(X−1)···(X−i+1)
i!

is a multiple of X(X − 1) · · · (X − i). But then f (X) − a0 − a1X − · · · −
ai

X(X−1)···(X−n+1)
n! has degree at most n and is a multiple of a polynomial

of degree n + 1, so it has to be the zero polynomial. This establishes the ex-
istence of the ai’s. The construction we gave also shows that

ai = f (i)− a0 − a1

(
i
1

)
− · · · − ai−1

(
i

i− 1

)
,

which makes it clear that if all f (i) are integers (actually, it is enough to
have f (i) ∈ Z for 0 ≤ i ≤ n), then so are the ai’s. The other implication is
thus proved. �

Remark. 1◦ The fact that any polynomial of degree n can be written

f (X) = a0 + a1X + a2
X(X− 1)

2
+ · · ·+ an

X(X− 1) · · · (X− n + 1)
n!

for some real numbers ai can also be proved using a linear algebra ar-
gument. Namely, the map F : Rn+1 → Pn (Pn being the set of polyno-
mials with real coefficients and degree at most n) sending (a0, . . . , an) to
a0 + a1X + a2

X(X−1)
2 + · · · + an

X(X−1)···(X−n+1)
n! is linear and clearly injec-

tive. Since the target and source are vector spaces of the same dimension, it
has to be an isomorphism, thus surjective.

2◦ The desired relation can be written

f (X) =
n

∑
i=0

ai

(
X
i

)
,

which immediately suggests the method of finite differences. Indeed, by this
method, one obtains ak = ∆k( f )(0), where ∆( f )(X) = f (X + 1)− f (X). This
gives another proof, also classical, of the first part.

Theorem 1.13. (Schur) Let f ∈ Z[X] be a non constant polynomial. Then the set
of prime numbers dividing at least one non-zero number between the values f (1),
f (2), . . ., f (n), . . ., is infinite.

Proof. First, suppose that f (0) = 1 and consider the numbers f (n!). For suf-
ficiently large n, they are non-zero integers. Moreover, f (n!) ≡ 1 (mod n!)
and so if we pick a prime divisor of each of the numbers f (n!) we obtain
the conclusion (since in particular any such prime divisor is greater than n).
Now, if f (0) = 1, the conclusion is obvious. Suppose thus that f (0) 6= 1 and
consider the polynomial g(x) = f (x f (0))

f (0) . Obviously, g ∈ Z[X] and g(0) = 1.
Applying now the first part of the solution, we easily get the conclusion. �
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We now present a number of illustrative examples.

Example 1.65. Let f ∈ Z[X] be a non constant polynomial and n,k some posi-
tive integers. Then there exists a positive integer a such that each of the numbers
f (a), f (a + 1), . . . , f (a + n− 1) has at least k distinct prime divisors.

Solution. Let us consider an array of different prime numbers pij, with
i, j = 1, . . . ,k such that for some positive integers xij such that f (xij) ≡ 0
(mod pij). We know that this is possible from Schur’s Theorem. Now, using
the Chinese remainder theorem we can find a positive integer a such that
ai− 1≡ xij (mod pij). It follows that each of the numbers f (a), f (a + 1), . . .,
f (a + n− 1) has at least k distinct prime divisors.

Example 1.66. The polynomial P ∈ Z[x] takes the values ±1 at three different
integer points. Prove that it has no integer zeros.

Solution. Suppose to the contrary, that a,b, c,d are integers with P(a), P(b),
and P(c) are in the set {−1,1} and P(d) = 0. Then by Theorem 1.10 the
integers a− d, b− d and c− d all divide 1, a contradiction.

Example 1.67. Let P(x) be a polynomial with integer coefficients. Prove that if
P(P(· · ·P(x) · · · )) = x for some integer x (where P is iterated n times), then
P(P(x)) = x.

Solution. Consider the sequence given by x0 = x and xk+1 = P(xk) for k≥ 0.
Assume xk = x0. As di = xi+1 − xi | P(xi+1)− P(xi) = xi+2 − xi+1 = di+1 for
all i, which together with dk = d0 implies |d0| = |d1| = . . . = |dk|.

Suppose that d1 = d0 = d 6= 0. Then d2 = d (otherwise x3 = x1 and x0 will
never occur in the sequence again). Similarly, d3 = d etc, and hence xk =
x0 + kd 6= x0 for all k, a contradiction. It follows that d1 = −d0, so x2 = x0.

Example 1.68. Consider a polynomial P with integer coefficients and some dis-
tinct integers a1, a2, . . . , an. Prove that if there exists a permutation σ of the set
{1,2, . . . ,n} such that P(ak) = aσ(k), k = 1,2, . . . ,n, then σ ◦ σ is the identity.

Solution. The statement is true if σ is the identity permutation e. If not, as-
sume on the contrary that σ ◦ σ 6= e. Hence, there is a k ≥ 3 and k distinct in-
tegers b1,b2, . . . ,bk among a1, a2, . . . , an such that P(bl) = bl+l for l = 1,2, . . . ,k
(here and henceforth, the indices are taken modulo k).

By Theorem 1.10, if P is a polynomial with integer coefficients, and u,v
arbitrary distinct integers, then u − v divides P(u) − P(v). It follows that
bl − bl+1 divides P(bl) − P(bl+1) = bl+1 − bl+2 for l = 1,2, . . . ,k. Hence for
each l = 1,2, . . . ,k there is an integer ql such that

bl+l − bl+2 = ql(bl − bl+l).

Multiplying the above equalities and simplifying, we get qlq2 · · ·qk = 1.
Thus ql =±1 for l = 1,2, . . . ,k. Actually, no ql can be −1, since otherwise the
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above relation yields bl = bl+2 and b1,b2, . . . ,bk are distinct by hypothesis.
But q1 = q2 = . . . = qk leads to a contradiction either. Indeed, in this case

b1 − b2 = b2 − b3 = . . . = bk−1 − bk = bk − b1,

and the sum of these equal numbers is 0. Then b1 = b2 = . . . = bk , and this is
again impossible.

Example 1.69. Suppose that a positive integer m and a real polynomial R(x) =
anxn + an−1xn−1 + · · ·+ a0 are such that R(x) is an integer divisible by m when-
ever x is an integer. Prove that n!an is divisible by m.

Solution. Apply Theorem 1.12 on the polynomial 1
m R(x). The leading coef-

ficient of this polynomial equals cn + ncn−1 + · · · + n!c0, and the property
follows.

Example 1.70. The polynomial f (x) = xn + a1xn−1 + · · ·+ an−1x + an with in-
teger non-zero coefficients has n distinct integer roots. Prove that if the roots are
pairwise coprime, then an−1 and an are coprime.

Solution. Assume that gcd(an−1, an) 6= 1. then both an−1 and an are divisi-
ble by some prime p. Let the roots of the polynomial be r1,r2, . . . ,rn. Then
r1r2, . . . ,rn = (−1)nan. It follows that at least one of the roots, say r1, is divis-
ible by p. We also have

r1r2 · · · rn−1 + r1r3 · · · rn−1 + · · ·+ r2r3 · · · rn = (−1)n−1 ≡ 0 (mod p).

All terms containing r1 are divisible by p, hence r2r3 · · · rn is divisible by p.
Hence gcd(r1,r2r3 · · · rn) is divisible by p contradicting the fact that the roots
are pairwise coprime, and the conclusion follows.

Example 1.71. Let f1, f2, . . . , fk be nonconstant polynomials with integer coeffi-
cients. Prove that for infinitely many n all numbers f1(n), f2(n), . . . , fk(n) are
composite.

Solution. Let f1, f2, . . . , fk be the corresponding polynomials. By Schur’s the-
orem, for any i there are infinitely many primes p that divide at least one of
the numbers fi(1), fi(2), . . .. Thus, there are distinct primes p1,q1, . . . , pk,qk
and integers a1,b1, . . . , ak,bk such that fi(ai) ≡ 0 (mod pi) and fi(bi) ≡ 0
(mod qi). By the Chinese Remainder Theorem, there are infinitely many
n that satisfy n ≡ ai (mod pi),n ≡ bi (mod qi). For any such n we have
piqi | fi(n), so that fi(n) is composite for all i.

The following two problems are standard applications of the fact that
a− b divides f (a)− f (b) if f ∈Z[X] and a,b ∈Z (see Theorem 1.10).

Example 1.72. Let f ∈Z[X] and let n≥ 3. Prove that there are no distinct integers
x1, x2, . . . , xn with f (xi) = xi−1, i = 1,2, . . . ,n (indices taken mod n).
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Solution. If such a polynomial f and integers xi existed, xi− xi−1 = f (xi+1)−
f (xi) would be divisible by xi+1 − xi. In particular, |xi − xi−1| ≥ |xi+1 − xi|
for all i. This forces the numbers |xi − xi−1| to be equal. This is however im-
possible. Indeed, if there is i such that xi+1 − xi, xi+2 − xi+1 have different
signs, then xi = xi+2, which contradicts the hypothesis that xi are all distinct.
But such i has to exist, because ∑i(xi+1 − xi) = 0. This finishes the proof.

Example 1.73. Let f ∈Z[X] be a polynomial of degree n≥ 2. Prove that the poly-
nomial f ( f (X))− X has at most n integer zeros.

Solution. Suppose that x1 < x2 < . . . < xn+1 are distinct integers such that
f ( f (xi)) = xi. Then f (xi) are also pairwise distinct and f (xi) − f (xj) is a
multiple of xi − xj. But xi − xj = f ( f (xi)) − f ( f (xj)) is also a multiple of
f (xi)− f (xj). Thus, we must have | f (xi)− f (xj)| = |xi − xj|. But then

f (xn+1)− f (x1) =
n

∑
i=1
| f (xi+1)− f (xi)|,

which implies that all numbers f (xi+1) − f (xi) have the same sign. Com-
bined with the equality | f (xi)− f (xi+1)|= |xi − xi+1| this shows that either
all numbers f (xi) + xi are equal or that f (xi)− xi are all equal. This is how-
ever impossible, as f has degree n.

Remark. Recently, a very similar problem featured in the IMO 2006: let P(X)
be a polynomial of degree n > 1 with integer coefficients and let k be a posi-
tive integer. Consider the polynomial

Q(X) = P(P(· · ·P(P︸ ︷︷ ︸
k times

(X)))).

Prove that there are at most n integers such that Q(t) = t. It follows from
Example 1.73 that any integral solution of the equation Q(t) = t is a solution
of the equation P(P(t)) = t, so this new problem is actually equivalent to
the discussed one.

Example 1.74. Find all integers n > 1 for which there is a polynomial f ∈ Z[X]
with the property: for any integer k one has f (k) ≡ 0 (mod n) or f (k) ≡ 1
(mod n) and both these equations have solutions.

Solution. The answer is: exactly the powers of a prime number. If n is a
prime power, by Euler’s theorem the polynomial Xϕ(n) is a solution.

Conversely, suppose there exists a polynomial f with the properties in the
statement and that n has at least two different prime factors p,q. Changing
f to f (X − a) for a suitable a, we may assume that f (0) ≡ 0 (mod n). Thus
f (0) ≡ 0 (mod q), which implies that for all b ∈ Z we also have f (bq) ≡ 0
(mod q). So, we cannot have f (bq)≡ 1 (mod n), hence f (bq)≡ 0 (mod n).
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In particular, f (bq) ≡ 0 (mod p). But then for all a ∈ Z we also have
f (ap + bq) ≡ f (bq) ≡ 0 (mod p) and so f (ap + bq) ≡ 0 (mod n). Since any
integer x ∈Z can be written ap + bq for suitable a,b, it follows that the equa-
tion f (x) ≡ 1 (mod n) has no solutions, a contradiction.

Example 1.75. Find all polynomials f with integer coefficients which satisfy the
property f (n) | 2n − 1 for all positive integer n.

Solution. Of course, if f is constant, then f has to be either 1 or−1 and these
are solutions. So, assume that f is nonconstant. We may assume that the
leading coefficient of f is positive. Take n such that f (n) > 1 and p a prime
factor of f (n). Then p | 2n− 1 while also p | f (n+ p) and f (n+ p) | 2n+p− 1.
But then p | 2p − 1, which is certainly impossible. So any such f is constant
and the solutions are 1,−1.

Here is a beautiful and rather tricky application which involves of ideas
present in the proof of Hensel’s lemma (see Lemma 3.1 in [80]).

Example 1.76. Let p be a prime and let f ∈ Z[X] be a polynomial. If the values
f (0), f (1), . . . , f (p2 − 1) give distinct remainders when divided by p2, prove that
f (0), f (1), . . . , f (p3 − 1) give distinct remainders when divided by p3.

Solution. Assume that f (i) ≡ f (j) (mod p3) for some i, j. Since f (i) ≡ f (j)
(mod p2) and since f is injective mod p2, we deduce that i ≡ j (mod p2),
say j = i + p2k. It is enough to prove that k ≡ 0 (mod p). Assume that this
is not the case. We have

f (i) ≡ f (j) ≡ f (i + kp2) ≡ f (i) + kp2 f ′(i) (mod p3),

so p divides k f ′(i). Thus p divides f ′(i). But then

f (i + kp) ≡ f (i) + kp f ′(i) ≡ f (i) (mod p2),

which, combined with the hypothesis, yields i + kp ≡ i (mod p2), a contra-
diction. Thus k ≡ 0 (mod p) and i ≡ j (mod p3). The conclusion follows.

We continue with a series of not so difficult problems.

Example 1.77. Let f ∈Z[X] be a nonconstant polynomial. Prove that the sequence
f (3n) (mod n) is not bounded.

Solution. Changing f with its opposite, we may assume that the leading
coefficient of f is positive. So, given N, there exists m such that f (3m) >
N. Choose a prime p > 2 f (3m) and observe that f (3pm) ≡ f (3m) (mod p)
by Fermat’s little theorem. In particular, if r = f (3mp) (mod mp), then r ≡
f (3m) (mod p) and so r ≥ f (3m) > N, finishing the proof.

Example 1.78. Is there a nonconstant polynomial f ∈ Z[X] and an integer a > 1
such that the numbers f (a), f (a2), f (a3), . . . are pairwise relatively prime?
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Solution. Assume that f is such a polynomial and a is as in the state-
ment. Let g = gcd(a, f (ak)) = gcd(a, f (0)). If g > 1, then g is a common
factor of all f (ak). Thus g = 1, so a and f (ai) are relatively prime for all
i. Choose an i with | f (ai)| > 1 and choose j = i + ϕ(| f (ai)|), where ϕ is
Euler’s totient function. Then f (ai) divides aj − ai by Euler’s Theorem, so
f (ai) divides f (aj)− f (ai) and f (ai)| f (aj). But this contradicts the fact that
gcd( f (ai), f (aj)) = 1 and shows that the answer to the problem is negative.

Example 1.79. Find all polynomials f with integer coefficients such that there ex-
ists k such that for all primes p, f (p) has at most k prime factors.

Solution 1. Note that all polynomials of the form aXm work, for obvious
reasons. Let f be a solution of the problem and suppose f is not of this
form. So we can write f (X) = Xmg(X) for some polynomial g with inte-
ger coefficients such that g(0) 6= 0 and g is not constant. By Schur’s theo-
rem, there are infinitely many primes dividing at least one of the numbers
g(1), g(2), . . .. In particular, we can choose p1, p2, . . . , pk+1 distinct primes
greater than |g(0)| and we can choose positive integers a1, a2, . . . , ak+1 such
that g(ai) ≡ 0 (mod pi). Using the Chinese Remainder Theorem, we can
find an integer a such that a ≡ ai (mod pi) for all i.

Note that a is relatively prime to p1 p2 · · · pk+1 (otherwise some pi would
divide a, so pi | ai and then pi | g(0), a contradiction). Thus, by Dirichlet’s
theorem, there exist infinitely many primes p ≡ a (mod p1 p2 · · · pk+1). In
particular, we can choose such a prime p with f (p) 6= 0. Since by construc-
tion f (p) is a multiple of p1 p2 · · · pk+1, it follows that f is not a solution of
the problem. The conclusion follows.

Solution 2. Note that all polynomials of the form f (X) = aXm work. Sup-
pose f (X) = Xmg(X) is such a polynomial which is not of this form. Then
g(X) is also such a polynomial. Thus we may assume that f is nonconstant
and f (0) 6= 0. Let p be a prime not dividing f (0), hence p does not divide
f (p). By Dirichlet’s Theorem there are infinitely many primes q of the form
q = p + k f (p)2. Choose such a q with | f (q)| > | f (p)|. For such a q we have
f (q) ≡ f (p) (mod f (p)2). Thus f (q) is divisible by every prime factor of
f (p), with exactly the same multiplicities, and at least one additional prime
factor. Iterating this construction, we can find a sequence of primes (pn) for
which f (pn) has at least n prime factors. Thus the only solutions where the
ones already given.

Example 1.80. Find all polynomials f ∈Z[X] with the property that for any rela-
tively prime integers m,n, the numbers f (m), f (n) are also relatively prime.

Solution 1. The solutions are the polynomials ±Xd for d≥ 0. Trivially, these
are solutions of the problem. Consider now any nonconstant solution f and
without loss of generality (change f into − f ) we may assume that the lead-
ing coefficient of f is positive. Suppose that p is a large prime for which p
does not divide f (p). Then p and p+ f (p) are relatively prime and thus f (p)
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and f (p + f (p)) are relatively prime. However, f (p) divides f (p + f (p)).
Thus necessarily | f (p)| = 1 or f (p) = 0. Since p was large, none of this hap-
pens ( f is not constant). Thus, for p large enough we have p | f (p), forcing
p | f (0). This implies that f (0) = 0 and so we can write f (X) = Xg(X) for
some polynomial g with integral coefficients. Of course, g satisfies the same
property as f and has smaller degree. Repeating the argument with g or per-
forming an obvious induction on the degree of f , we deduce that f is indeed
of the form Xd for some d. This solves the problem.

Solution 2. Another proof can be based on the following preliminary result.

Lemma 1.2. If f ∈Z[X] is not of the form ±Xn, then there exist different primes
p,q such that q | f (p).

Proof of Lemma. Assuming the contrary, we may assume that the leading
coefficient of f is positive. So, for all large enough p, f (p) = pkp for some
integer kp. Since kp =

log f (p)
log p converges to deg( f ), it follows that kp = deg( f )

for all sufficiently large p and so f (p) = pdeg( f ) for all sufficiently large p.
The conclusion follows.

Coming back to the proof, choose a solution f of the problem and sup-
pose that f is not of the form ±Xn. Pick primes p,q as in the lemma. Then
q divides f (p) and f (p + q) (since q divides f (p + q) − f (p)). But this is
impossible, since p, p + q are relatively prime and so f (p) and f (p + q) are
relatively prime. The conclusion follows. �

Example 1.81. Let f be a polynomial with integer coefficients and let a0 = 0 and
an = f (an−1) for all n ≥ 1. Prove that (an)n≥0 is a Mersenne sequence, that is
gcd(am, an) = agcd(m,n) for all positive integers m and n.

Solution. Write f d for the composite of f with itself d times. Pick any pos-
itive integers m,n and write m = du,n = dv with gcd(u,v) = 1 and observe
that an = f n(0) = gv(0) and am = gu(0), where g = f d. Moreover, ad = g(0).
So, it is enough to prove that for any g with integral coefficients and any
gcd(u,v) = 1 we have gcd(gu(0), gv(0)) = g(0). One may clearly notice that
for any polynomial h with integer coefficients and any k we have h(0) | hk(0).
Applying this to g already shows that g(0) divides gcd(gu(0), gv(0)). Con-
versely, let x = gcd(gu(0), gv(0)). Applying the previous remark to h = gu

and h = gv, we obtain that for all A, B≥ 1 we have x | gAu(0) and x | gBv(0).
Taking A, B such that Bv = Au + 1, we get x | g(gAu(0)) and x | gAu(0).
Clearly, x divides g(0) and the conclusion follows.

Example 1.82. Find all integers k such that if a polynomial with integer coefficients
f satisfies

0≤ f (0), f (1), · · · , f (k + 1) ≤ k,

then f (0) = f (1) = · · · = f (k) = f (k + 1).
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Solution. If k≤ 2 we can easily find examples, for instance f (X) = X(2−X)
for k = 1 and f (X) = X(3− X) for k = 2. So, assume that k≥ 3 and let f be a
polynomial with integral coefficients such that 0≤ f (0), f (1), . . . , f (k + 1) ≤
k. As f (k + 1)− f (0) is between −k and k and since it is a multiple of k + 1,
we must have f (0) = f (k + 1), hence

f (X)− f (0) = X(X− (k + 1))g(X),

for some polynomial g, which clearly has integral coefficients (note that X
divides f (X)− f (0) and X is relatively prime to X− (k + 1)). Thus, we have
f (0) + i(i− k− 1)g(i) is between 0 and k for all 0≤ i ≤ k + 1. In particular

k ≥ i(k + 1− i)|g(i)|, 0≤ i ≤ k + 1.

However, i(k + 1− i) > k, 2 ≤ i ≤ k− 1, hence g(i) = 0 for 2 ≤ i ≤ k− 1. In
particular, we can write g(X) = (X − 2) · · · (X − k + 1)h(X), for some poly-
nomial h, again with integral coefficients. But then

f (k)− f (0) = −k(k− 2)!h(k), f (1)− f (0) = (−1)k−1k(k− 2)!h(1).

This implies that k(k − 2)!|h(x)| ≤ k for x ∈ {1,k}, which clearly implies
that h(1) = h(k) = 0, unless k = 3. Therefore, unless k = 3 we can definitely
conclude that f (0) = f (1) = . . . = f (k+ 1) and so all k≥ 4 are solutions of the
problem. For k = 3 we can actually have equality in all previous inequalities,
hence we have the polynomial f (X) = X(X − 2)2(4− X). Clearly, k = 3 is
not a solution and the problem is solved.

Example 1.83. Let n be a positive integer. What is the least degree of a monic poly-
nomial f with integer coefficients such that n | f (k) for any integer k?

Solution. This is immediate. Indeed, by Theorem 1.12 we can write

f (X)

n
= a0 + a1X + · · ·+ ad

X(X− 1) · · · (X− d + 1)
d!

,

where d = deg( f ). Considering the leading coefficients in this equality
shows that d! is a multiple of n. On the other hand, if d! is a multiple of
n, then we can take f (X) = X(X + 1) · · · (X + d− 1). Thus the answer is: d
is the smallest integer such that d! is a multiple of n.

Example 1.84. Let f be a polynomial with rational coefficients such that f (n) ∈Z

for all n∈Z. Prove that for any integers m and n the number lcm[1,2, . . . ,deg( f )] ·
f (m)− f (n)

m−n is an integer.

Solution. Fix m 6= n integers and let d = m− n and g(X) = f (n + X). Then
g has rational coefficients, sends integers to integers and deg( f ) = deg(g).
So, we need to prove that
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lcm[1,2, . . . ,deg(d)] · g(d)− g(0)
d

is an integer. Using the result of problem 13, if D = deg(g), then there exist
integers a0, . . . , aD such that

g(X) =
D

∑
i=0

ai
X(X− 1) · · · (X− i + 1)

i!
.

So, it is enough to prove that for any 1≤ i ≤ D we have

lcm[1,2, . . . , D] · (d− 1)(d− 2) · · · (d− i + 1)
i!

∈Z.

But the last quantity can also be written as

(d− 1) · · · (d− i + 1)
(i− 1)!

· lcm[1,2, . . . , D]

i
,

making it clear that it is an integer. The conclusion follows.

Example 1.85. Let f be a polynomial of degree d such that f (Z)⊂Z and for which
f (n)− f (m) is a multiple of m− n for all 0≤ m,n ≤ d. Prove that f (m)− f (n)
is a multiple of m− n for all integers m,n with m 6= n.

Solution. The crucial point is the following consequence of the previous
problem: if Lk = lcm(1,2, . . . ,k), then m− n divides Lk

(
(m

k )− (n
k)
)

for all in-
tegers m 6= n. Now, we will prove that if m− n divides f (m)− f (n) for all
0 ≤ m 6= n ≤ d = deg f , then f is a linear combination with integer coeffi-
cients of the polynomials Lk(

X
k ) for 0≤ k≤ d. By the previous key point, this

will be enough to conclude.
As f (Z) ⊂Z, by Exercise 1.78 there exist integers a0, a1, . . ., ad such that

f (X) = a0 + a1

(
X
1

)
+ · · ·+ ad

(
X
d

)
.

It remains to prove that ai is a multiple of Li for all i. We prove this by induc-
tion, the case i = 0 being clear (by definition L0 = 1). Assume that a0, . . . , ai−1
are multiples of L0, L1, . . . , Li−1 and fix 0≤ j < i. Then j− i divides

f (i)− f (j) =
i

∑
k=0

ak

((
i
k

)
−
(

j
k

))
= ai + ∑

0≤k<i
ak

((
i
k

)
−
(

j
k

))
.

By the lemma and the inductive hypothesis, each of the numbers ak

(
( i

k)− ( j
k)
)

with 0≤ k < i is a multiple of i− j. We deduce that i− j divides ai and since
j < i was arbitrary, it follows that Li divides ai, which end the proof.



Chapter 2
Finite Sums and Products

2.1 How to use the sum symbol

In this section we discuss techniques of evaluating various special sums and
products. special sums and products. A sum is simply repeated addition,
and can be concisely expressed in sigma notation as follows:

n

∑
k=1

ak = a1 + a2 + · · ·+ ak.

The expressions above and below the sigma are the bounds of the sum-
mation. Bounds can come in various forms; the only requirement is that the
specify some (possibly empty) set over which the summation occurs. For
example, the following are correct uses of sigma notation:

n

∑
i,j=1

aij, ∑
1≤i<j≤n

aij, ∑
1≤i,j≤100

ij=360

aij, ∑
p prime

ap.

Some important properties of sums are as follows:

n

∑
k=1

(ak + bk) =

(
n

∑
k=1

ak

)
+

(
n

∑
k=1

bk

)
(distributivity over addition)

n

∑
k=1

(αak) = α

(
n

∑
k=1

ak

)
(distributivity over multiplication by a constant)

In the second example α must be a constant and cannot depend on k.
One important class of sums are telescoping sums. These are sums where

almost all of the terms will cancel each other. There are two flavors of tele-
scoping sums: direct and indirect telescoping sums.

51
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2.2 Telescopic sums

A direct telescoping sum is one where there exists some sequence {xk} such

that ak = xk+1 − xk for k = 1,2, . . . ,n. In this case we may write
n
∑

k=1
ak =

n
∑

k=1
(xk+1 − xk) = (x2 − x1) + (x3 − x2) + · · ·+ (xn+1 − xn) = xn+1 − x1.

An indirect telescoping sum is one where there exists some sequence {xk}
such that ak = xk − xk+1 for k = 1,2, . . . ,n. In this case we may write

n
∑

k=1
ak =

n
∑

k=1
(xk − xk+1) = (x1 − x2) + (x2 − x3) + · · ·+ (xn − xn+1) = x1 − xn+1.

A common goal of manipulating sums is to find a closed form, that is an
expression equal to the sum that is free of sigma notation.

Example 2.1. Find a closed form for
n

∑
k=1

k(k + 1).

Solution. We can expand k(k + 1) = k2 + k and use formulas for sums of
powers to compute a general form. However, there is an alternate method.
We have (k)(k + 1)(k + 2) − (k − 1)(k)(k + 1) = 3(k)(k + 1), which gives

n

∑
k=1

k(k + 1) =
1
3

n

∑
k=1

[(k)(k + 1)(k + 2) − (k − 1)(k)(k + 1)]. This is a direct

telescoping series; letting xk = (k− 1)(k)(k + 1), we have
n

∑
k=1

(xk+1 − xk) =

xn+1 − x1 = n(n + 1)(n + 2)− 0. Hence
n

∑
k=1

k(k + 1) =
n(n + 1)(n + 2)

3
.

Remark. We can use this identity, coupled with
n

∑
k=1

k =
n(n + 1)

2
, to find the

closed form for
n

∑
k=1

k2.

Example 2.2. Find a closed form for
n

∑
k=1

k(k + 1)(k + 2).

Solution. Writing

k(k + 1)(k + 2) = [(k)(k + 1)(k + 2)(k + 3)− (k− 1)(k)(k + 1)(k + 2)]/4,

we obtain a direct telescoping sum analogous to that in Example 1. Writing
xk = (k− 1)(k)(k + 1)(k + 2), we have

n

∑
k=1

(xk+1 − xk)/4 = (xn+1 − x1)/4 =
n(n + 1)(n + 2)(n + 3)

4
.
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Example 2.3. Let S =
n

∑
k=1

k(k + 1) · · · (k + p). We have

k(k + 1) · · · (k + p) =
1

p + 2
[k(k + 1) · · · (k + p + 1)− (k− 1)k · · · (k + p)].

This is a telescopic series and we obtain

S =
1

p + 2
n(n + 1) · · · (n + p)(n + p + 1).

2.3 The sums Sp(n) = ∑n
k=1 kp, p = 0,1,2, . . .

We now consider sums of the form Sp(n) =
n

∑
k=1

kp, where p is a nonnegative

integer. The closed forms for small p are

S0(n) = n, S1(n) =
n(n + 1)

2
,

S2(n) =
n(n + 1)(2n + 1)

6
, S3(n) =

(
n(n + 1)

2

)2

.

We show a more general relation for Sp(n) in our next result.

Theorem 2.1. The following relation holds:(
p + 1

1

)
Sp(n) + · · ·+

(
p + 1

p

)
S1(n) = (n + 1)p+1 − n− 1.

Proof. By the binomial theorem,

(k + 1)p+1 − kp+1 =

(
p + 1

1

)
kp +

(
p + 1

2

)
kp−1 + · · ·+

(
p + 1

p

)
k1 + 1.

Summing this as k ranges from 1 to n gives

n

∑
k=1

(k + 1)p+1 − kp+1

=

(
p + 1

1

) n

∑
k=1

kp +

(
p + 1

2

) n

∑
k=1

kp−1 + · · ·+
(

p + 1
p

) n

∑
l=1

k1 + n.
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The left-hand side of this sum reduces to (n + 1)p+1 − 1, while in the right-
hand side we may replace our sums of powers of k with Sp(n), hence

(n + 1)p+1 − 1

=

(
p + 1

1

)
Sp(n) +

(
p + 1

2

)
Sp−1(n) + · · ·+

(
p + 1

p

)
Sp(n) + n,

which after a tiny bit of rearranging is exactly what we set out to prove.

Using this method we can prove the following relations:

S4(n) =
n(n + 1)(2n + 1)(3n2 + 3n− 1)

30
,

S5(n) =
n2(n + 1)2(2n2 + 2n− 1)

12
,

S6(n) =
n(n + 1)(2n + 1)(3n4 + 6n3 − 3n + 1)

42
.

�

Theorem 2.2. 1◦ For all integers p ≥ 0, Sp(n) is a polynomial of degree p + 1 in
n with rational coefficients and leading coefficient 1/(p + 1).

2◦ The coefficient of np is 1
2 , hence it does not depend on p.

Proof. 1. We prove this by strong induction. We can verify that S0(n) = n
satisfies the conditions above; this provides our base case. Suppose that for
some p ≥ 1 that S0(n),S1(n), . . . ,Sp−1(n) satisfy the conditions above. We
use the relation

(n + 1)p+1 − 1 =

(
p + 1

1

)
Sp(n) + · · ·+

(
p + 1

p

)
Sp(n) + n

proved in Example 3. We rearrange this to write

Sp(n) =
(n + 1)p+1 − (p+1

2 )Sp−1(n)− · · · − (p+1
p )S1(n)− n− 1

p + 1
.

By our inductive hypotheses, the highest-degree term in the right-hand side
is the (n + 1)p+1 term. Hence Sp(n) is of degree p + 1 in n. Similarly by our
inductive hypothesis, the right-hand side has rational coefficients. Finally,
as the only term of degree p + 1 on the right-hand side is (n + 1)p+1, which
expands to np+1 plus lower-degree terms, the leading coefficient of Sp(n)
must be 1/(p+1

1 ) = 1/(p + 1) as desired.

2. Let ap be the coefficient of np. Identifying the coefficient of np in the
recursive relation, it follows (p+1

1 ) = (p+1
1 )ap + (p+1

2 ) 1
p , hence ap =

1
2 . �
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2.4 The geometric sum

We will discuss now a very important class of sums.

Theorem 2.3. For every complex number a 6= 1, the following formula holds:

n

∑
k=0

ak =
1− an+1

1− a
.

Proof. Let S =
n

∑
k=0

ak. Then we may write:

S = 1 + a + a2 + · · ·+ an

−aS = −a− a2 − · · · − an − an+1

S− aS = 1− an+1

S =
1− an+1

1− a

�

Remark. For every complex number a with |a| < 1, we have ∑∞
k=1 ak = 1

1−a .

Example 2.4. Find a closed form for
n

∑
k=0

kak where a 6= 1.

Solution. Let S =
n

∑
k=0

kak. We rewrite S as

a + a2 + a3 + · · ·+ an = (a− an+1)/(1− a)

a2 + a3 + · · ·+ an = (a2 − an+1)/(1− a)

a3 + · · ·+ an = (a3 − an+1)/(1− a)

. . . =
...

an = (an − an+1)/(1− a).

Adding up the right-hand sides we get our desired sum. We have

S =
(a + a2 + · · ·+ an)− nan+1

1− a

=
a− an+1 − nan+1 + nan+2

(1− a)2

=
a− (n + 1)an+1 + nan+2

(1− a)2 .
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Example 2.5. Find a closed form for
n

∑
k=0

k2ak where a 6= 1.

Solution. Let S =
n

∑
k=0

k2ak. Then we may write

S− aS =
n

∑
k=1

(k2 − (k− 1)2)ak =
n

∑
k=1

(2k− 1)ak − n2an+1.

But this can be expressed in terms of sums we can already compute as

(1− a)S = 2
(

a− (n + 1)an+1 + nan+2

(1− a)2

)
−
(

a− an+1

1− a

)
− n2an+1.

We get

S = 2
nan+2 − (n + 1)an+1 + a

(a− 1)3 − a− an+1

(a− 1)2 + n2 an+1

a− 1
.

2.5 Some interesting trigonometric sums

In this section we present a general trigonometric sum for which we pro-
vide three proofs, and a number of interesting consequences. The original
material was published in [32], inspired by a proposed problem in [31].

Theorem 2.4. For any real number a ∈R \ {−1,1} the following relation holds:

n−1

∑
k=0

1
a2 − 2acos 2kπ

n + 1
=

n(an + 1)
(a2 − 1) (an − 1)

. (2.1)

Proof 1. Let P ∈R[X] be a polynomial of degree n− 1 with real coefficients
denoted by P = a0 + a1X + · · ·+ an−1Xn−1. If α ∈Un is an nth root of unity,
then we have

|P(α)|2 = P(α) · P(α) = P(α) · P(α) = P(α) · P
(

1
α

)
=
(

a0 + a1α + · · ·+ an−1αn−1
)(

a0 +
a1

α
+ · · ·+ an−1

1
αn−1

)
= a2

0 + a2
1 + · · ·+ a2

n−1 +
n−1

∑
k=1

Akαk +
n−1

∑
k=1

Bk
1
αk ,

where the coefficients Ak, Bk, k = 1, . . . ,n− 1 are different from zero. Using
the relation (see [6, Proposition 3, page 46]) one gets
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∑
α∈Un

αk =

{
n, if n | k
0, otherwise

we get the following formula

∑
α∈Un

|P(α)|2 = n
(

a2
0 + a2

1 + · · ·+ a2
n−1

)
. (2.2)

In order to prove (2.1) we consider the polynomial

P = 1 + aX + · · ·+ an−1Xn−1 =
anXn − 1
aX− 1

.

Applying formula (2.2) it follows that

∑
α∈Un

|P(α)|2 = n
(

1 + a2 + · · ·+ a2(n−1)
)
= n

a2n − 1
a2 − 1

. (2.3)

On the other hand we have

∑
α∈Un

|P(α)|2 =
∣∣∣∣ anαn − 1

aα− 1

∣∣∣∣2 = (an − 1)2

(aα− 1) (aα− 1)
=

(an − 1)2

a2 − 2Re α · a + 1
,

and the desired result follows. �

Proof 2. By the Poisson kernel formula one obtains

1− r2

1− 2r cos t + r2 =
∞

∑
m=−∞

r|m|zm, where | r |< 1 (2.4)

and z = cos t + i sin t. Applying this formula in the current problem one gets

n−1

∑
k=0

1− a2

1− 2acos 2kπ
n + a2

=
n−1

∑
k=0

(
∞

∑
m=−∞

a|m|eim 2kπ
n

)

=
∞

∑
m=−∞

a|m|
(

n−1

∑
k=0

(
e

2πim
n

)k
)

= ∑
m∈Z

na|m| = n ∑
j∈Z

an|j|

= n
1− a2n

(1− an)2 = n
1 + an

1− an ,

and the formula follows. �

Proof 3. Let P ∈ C[X] be a polynomial whose factorization is given by the
formula P = ∏n

k=0
(
X2 + akX + b

)
. We have the following relations
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P′

P
=

n

∑
k=1

2X + ak
X2 + akX + b

=
1
X

n

∑
k=1

2X2 + akX + b− b
X2 + akX + b

= X
n

∑
k=1

1
X2 + akX + b

+
n
X
− b

X

n

∑
k=1

1
X2 + akX + b

=
X2 − b

X

n

∑
k=1

1
X2 + akX + b

+
n
X

,

from where we can derive the formula

XP′ − nP
(X2 − b)P

=
n

∑
k=1

1
X2 + akX + b

. (2.5)

For the polynomial

P = (Xn − 1)2 =
n−1

∏
k=0

(
X2 − 2X cos

2kπ

n
+ 1
)

we have P′ = 2nXn (Xn − 1), hence

XP′ − nP
(X2 − 1)P

=
2nXn−1 (Xn − 1)− n (Xn − 1)2

(X2 − 1) (Xn − 1)2 = n
Xn + 1

(X2 − 1) (Xn − 1)
,

and the desired relation (2.4) follows from (2.5). �

In the case n = 7 and a∈ (−1,1) one recovers Problem 49 in the Longlisted
Problems of IMO 1988 (see [91, pp. 217]).

We now present four examples inspired by the main result. The following
problem was proposed in [31].

Example 2.6. Evaluate the sum

n−1

∑
k=0

1

1 + 8sin2
(

kπ
n

) . (2.6)

Solution. Taking a = 2 in (2.4) one obtains

n−1

∑
k=0

1
4− 4cos 2kπ

n + 1
=

n (2n + 1)
3 (2n − 1)

, (2.7)

which can be written as

n−1

∑
k=0

1

1 + 8sin2
(

kπ
n

) =
n (2n + 1)
3 (2n − 1)

. (2.8)
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Example 2.7. The following identity holds.

n−1

∑
k=1

1

sin2
(

kπ
n

) =
(n− 1) (n + 1)

3
. (2.9)

Solution. Indeed, the identity (2.1) can be written as

n−1

∑
k=1

1
a2 − 2acos 2kπ

n + 1
=

n(an + 1)
(a2 − 1) (an − 1)

− 1

(a− 1)2 .

Taking the limit as a→ 1 on the right-hand side we get

lim
a→1

[
n(an + 1)

(a2 − 1) (an − 1)
− 1

(a− 1)2

]

=
1

2n
lim
a→1

(n− 1)an+1 − (n + 1)an + (n + 1)a− n + 1

(a− 1)3

=
1

2n
lim
a→1

(n + 1)(n− 1)an − n(n + 1)an−1 + (n + 1)

3 (a− 1)2

=
1

2n
lim
a→1

(n + 1)(n− 1)nan−2 (a− 1)
6 (a− 1)

=
(n− 1) (n + 1)

12
.

It follows that

lim
a→1

n−1

∑
k=1

1
a2 − 2acos 2kπ

n + 1
=

(n− 1) (n + 1)
12

,

that is

n−1

∑
k=1

1

4sin2
(

kπ
n

) =
(n− 1) (n + 1)

12
,

from where the conclusion follows.

Remark. 1◦ Using the symmetry

sin2 kπ

n
= sin2 (n− k)π

n
, k = 1, . . . ,n− 1,

by the identity (2.9) one obtains the following results.
If n = 2m + 1 is odd, then

m

∑
k=1

1

sin2
(

kπ
2m+1

) =
2m (2m + 2)

6
=

m (2m + 2)
3

.
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Writing 1 = sin2 t + cos2 t, this is equivalent to

m

∑
k=1

ctg 2 kπ

2m + 1
=

m (2m− 1)
3

. (2.10)

If n = 2m is even, then one obtains

n
2−1

∑
k=1

1

sin2
(

kπ
n

) =
1
2

(
n2 − 1

3
− 1
)
=

n2 − 4
6

.

2◦ The identity (2.10) can also be proved by different means, as shown
in [4, Page 147]. There the authors consider the trigonometric equation
sin(2m + 1)x = 0, with the roots

π

2m + 1
,

2π

2m + 1
, . . . ,

mπ

2m + 1
.

Writing sin(2m + 1)x in terms of sin x and cos x, we obtain

sin(2m + 1)x =

(
2m + 1

1

)
cos2m x sin x−

(
2m + 1

3

)
cos2m−2 x sin3 x + · · ·

= sin2m+1 x
((

2m + 1
1

)
ctg 2mx−

(
2m + 1

3

)
ctg 2m−2x + · · ·

)
.

Setting x = kπ
2m+1 , for k = 1, . . . ,m, and since sin2m+1 x 6= 0 we obtain(

2m + 1
1

)
ctg 2mx−

(
2m + 1

3

)
ctg 2m−2x + · · · = 0.

Substituting y = ctg 2x this equation becomes(
2m + 1

1

)
ym −

(
2m + 1

3

)
ym−1 + · · · = 0,

which has the roots

ctg 2 π

2m + 1
, ctg 2 2π

2m + 1
, . . . , ctg 2 mπ

2m + 1
.

By Vieta’s relation between coefficients and roots one obtains

m

∑
k=1

ctg 2 kπ

2m + 1
=

(2m+1
3 )

(2m+1
1 )

=
m(2m− 1)

3
.

Theorem 2.4 can also be used to prove other interesting identities.
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Example 2.8. If n is odd and n ≥ 3, then

n−1
2

∑
k=1

1

cos2
(

kπ
n

) =
n2 − 1

2
. (2.11)

If n is even and n ≥ 4, then

n
2−1

∑
k=1

1

cos2
(

kπ
n

) =
n2 − 4

6
. (2.12)

Solution. In order to prove (2.11) note from (2.1) that we have

n−1

∑
k=0

1
2 + 2cos 2kπ

n
= lim

a→−1

n(an + 1)
(a2 − 1) (an − 1)

(2.13)

=
n
4

lim
a→−1

an + 1
a + 1

(2.14)

=
n2

4
. (2.15)

That is

n−1

∑
k=0

1

cos2
(

kπ
n

) = n2,

from where we obtain

n−1

∑
k=1

1

cos2
(

kπ
n

) = n2 − 1.

From the symmetry

cos2
(

kπ

n

)
= cos2

(
(n− k)π

n

)
, k = 1, . . . ,n− 1, (2.16)

one obtains the identity (2.11).
To prove (2.12) a few more steps are required. Again, by (2.1) one has



62 2 Finite Sums and Products

n−1

∑
k=0,k 6= n

2

1
2 + 2cos 2kπ

n
= lim

a→−1

[
n(an + 1)

(a2 − 1)(an − 1)
− 1

(a + 1)2

]

= lim
t→0

[
n
[
(t− 1)n + 1

]
t(t− 2) [(t− 1)n − 1]

− 1
t2

]

= −1
2

lim
t→0

n
[
(t− 1)n + 1

]
t− (t− 2)

[
(t− 1)n − 1

]
t2 [(t− 1)n − 1]

= −1
2

lim
t→0

nt
[
2− nt + n(n−1)

2 t2 + t3 f (t)
]

t2
[
−nt + n(n−1)

2 t2 + t3h(t)
]

−
(t− 2)

(
−nt + n(n−1)

2 t2 − n(n−1)(n−2)
6 t3 + t4g(t)

)
t2
(
−nt + n(n−1)

2 t2 + t3h(t)
)

= −1
2

n2(n−1)
2 − 2 n(n−1)(n−2)

6 − n(n−1)
2

−n
=

n2 − 1
12

,

since f , g, h are polynomials in t, so f (0), g(0) and h(0) are finite. Hence,

n−1

∑
k=0,k 6= n

2

1
2 + 2cos 2kπ

n
=

n2 − 1
3

.

By the symmetry of cosine formula (2.16) the identity (2.12) follows.

Remark. A direct proof of (2.12) can be obtained from (2.9) by using the
symmetry relation

cos2 kπ

n
= sin2

(
π

2
− kπ

n

)
= sin2 (n− 2k)π

2n
= sin2

( n
2 − k

)
π

n
, k = 1, . . . ,

n
2

.

Example 2.9. If x ∈R and |x| > 1, then

n−1

∑
k=0

1
x− cos 2kπ

n
=

2n
(

x +
√

x2 − 1
)[(

x +
√

x2 − 1
)n

+ 1
]

[(
x +
√

x2 − 1
)2
− 1
][(

x +
√

x2 − 1
)n
− 1
]

.
. (2.17)

Solution. Indeed, we have

n−1

∑
k=0

1
a2 − 2acos 2kπ

n + 1
=

1
2a

n−1

∑
k=0

1
1
2

(
a + 1

a

)
− cos 2kπ

n

.

Letting x = 1
2

(
a + 1

a

)
, one has a = x +

√
x2 − 1, and by identity (2.1) we get
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1
2a

n−1

∑
k=0

1
x− cos 2kπ

n
=

n(an + 1)
(a2 − 1) (an − 1)

,

which can be reduced to (2.17).
In the particular case x = 2 one recovers the identity

n−1

∑
k=0

1

1 + 2sin2
(

kπ
n

) =
2n
(

2 +
√

3
)[(

2 +
√

3
)n

+ 1
]

(
3 + 3

√
3
)[(

2 +
√

3
)n
− 1
] .

2.6 Finite products

We move now to the topic of products. A product is simply repeated multi-
plication, and can be concisely expressed in product notation (occasionally
called pi notation) as

n

∏
k=1

ak = a1a2a3 · · · an.

The indices on products can be written in different ways, just as with the
indices on sums. (It is far less common to see unusual indices on products
than on sums.) Some important properties of products are as follows:

n

∏
k=1

(akbk) =

(
n

∏
k=1

ak

)(
n

∏
k=1

bk

)
(distribution over multiplication)

n

∏
k=1

(αak) = αn
n

∏
k=1

ak (distribution over multiplication by a constant)

As with sums, an important class of products are telescoping products.
There are two flavors of telescoping products, as before - direct and indi-
rect telescoping products. A direct telescoping product is one where there
exists a sequence xk such that ak =

xk+1
xk

for k = 1,2, . . . ,n, where we have

n

∏
k=1

ak =
xn+1

x1
.

Analogously, an indirect telescoping product is one where there exists a
sequence xk such that ak =

xk
xk+1

for k = 1,2, . . . ,n. In this case we may write

n

∏
k=1

=
x1

xn+1
.
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Example 2.10. Compute the product

n

∏
k=2

k3 − 1
k3 + 1

.

Proof. We may write

k3 − 1
k3 + 1

=
(k− 1)(k2 + k + 1)
(k + 1)(k2 − k + 1)

,

hence we obtain

n

∏
k=2

k3 − 1
k3 + 1

=
n

∏
k=2

(k− 1)(k2 + k + 1)
(k + 1)(k2 − k + 1)

=
n

∏
k=2

k− 1
k + 1

·
n

∏
k=2

k2 + k + 1
k2 − k + 1

=
2

n(n + 1)
·

n

∏
k=2

k2 + k + 1
k2 − k + 1

.

In order to compute the last product, observe the following relation

k2 + k + 1
k2 − k + 1

=
k2 + k + 1

(k− 1)2 + (k− 1) + 1
,

therefore it is a direct telescopic product. Finally, we get

n

∏
k=2

k3 − 1
k3 + 1

=
2

n(n + 1)
· n2 + n + 1

3
=

2(n2 + n + 1)
3n(n + 1)

.

Example 2.11. 1◦ Prove that for every n ≥ 2,

n−1

∑
k=1

k
(k + 1)!

= 1− 1
n!

2◦ Prove that for every positive integer n ≥ 3, n! can be written as sum of exact n
of its distinct divisors.

Solution. For the first part, note that for every k ∈N∗, we have the identity

k
(k + 1)!

=
k + 1− 1
(k + 1)!

=
1
k!
− 1

(k + 1)!
.

Using this, we get that
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n−1

∑
k=1

k
(k + 1)!

=
n−1

∑
k=1

(
1
k!
− 1

(k + 1)!

)
.

The latter is a telescoping sum, where only the first and last terms survive.
The desired conclusion follows immediately.

For the second part, note that multiplying by n! the identity

n−1

∑
k=1

k
(k + 1)!

= 1− 1
n!

and re-arranging, we get that 1 +
n−1
∑

k=1

n!
(k+1)! k = n!. The conclusion follows

by observing that for each k ∈ {1,2, . . . ,n − 1}, the expressions n!
(k+1)! k are

distinct divisors of n!.

Example 2.12. Prove the inequality:

2
3
· 4

5
· · · 2n

2n + 1
<

3
2n + 3

Solution. Regrettably, the product on the left side does not possess the prop-
erty of being telescoping. Nevertheless, as we are tasked with proving an
inequality rather than an equality, we may seek to identify a telescoping
product that strictly exceeds the left-hand side while remaining less than or
equal to the right-hand side.

Indeed, note that for every k ∈N∗ we have that 4k2 + 4k + 1 < 4k2 + 6k,
hence (2k + 1)2 < 2k(2k + 3). This implies that

2k
2k + 1

<
2k + 1
2k + 3

.

Now, the left hand side of our inequality can be written as
n
∏

k=1

2k
2k+1 , hence

using the inequality above we get

n

∏
k=1

2k
2k + 1

<
n

∏
k=1

2k + 1
2k + 3

=
3
5
· 5

7
· 7

9
· · · 2n + 1

2n + 3
.

The expression on the right is now a telescoping product and by can-
celling terms we find that the product equals 3

2n+3 , as desired.





Chapter 3
Methods of Proof

3.1 Proof by contradiction

The method of argument by contradiction proves a statement in the follow-
ing way: First, the statement is assumed to be false. Then, a sequence of
logical deductions yields a conclusion that contradicts either the hypothe-
sis (indirect method), or a fact known to be true (reductio ad absurdum).
This contradiction implies that the original statement must be true. This is a
method that Euclid loved, and you can find it applied in some of the most
beautiful proofs from his Elements. Euclid’s most famous proof is that of the
infinitude of prime numbers.

Example 3.1 (Euclid). There are infinitely many prime numbers.

Solution. Assume, to the contrary, that only finitely many prime num-
bers exist. List them as p1 = 2, p2 = 3, p3 = 5, · · · , pn. Then the number
N = p1 p2 · · · pn + 1 is divisible by a prime p, yet is coprime to p1, p2, . . . , pn.
Therefore, p does not belong to our list of all prime numbers, a contradic-
tion. Hence the initial assumption was false, proving that there are infinitely
many primes.

Example 3.2. The number
√

2 is irrational.

Solution. Assume that
√

2 is rational, that is
√

2 = m
n , where m,n are positive

integers. We may suppose that gcd(m,n) = 1. By squaring, one obtains that
2n2 = m2, hence 2 | n2, hence n = 2n1, for some positive integer n1. Replacing
in 2n2 = m2, we get n2

1 = 2m2, implying the numbers m,n are both divisible
by 2, contradiction to gcd(m,n) = 1.

Similarly, one can prove that if d ∈N∗ is not a perfect n-th power, then
n
√

d is not a rational number.

67
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Example 3.3. Let n be an odd positive integer and let a1, a2, a3, . . . , an be a rear-
rangement of the numbers 1,2,3, . . . ,n. Show that

2 | (a1 − 1)(a2 − 2)(a3 − 3) · · · (an − n).

Solution. Assume, by contradiction, that (a1− 1)(a2− 2)(a3− 3) · · · (an− n)
is odd. Then all factors a1 − 1, a2 − 2, a3 − 3, . . . , an − n must be odd. Because
n is odd, it follows their sum (a1 − 1) + (a2 − 2) + (a3 − 3) + · · ·+ (an − n)
is also odd. But, clearly, the sum is 0, a contradiction.

We continue with an example of Euler.

Example 3.4 (Euler). Prove that there is no polynomial of degree at least 1 de-
fined by P(x) = anxn + an−1xn−1 + · · ·+ a0 with integer coefficients and with the
property that P(0), P(1), P(2), . . ., are all prime numbers.

Solution. Assume the contrary and let P(0) = p where, p is a prime. Then
a0 = p and P(kp) is divisible by p for all k > 1. Because we assumed that all
these numbers are prime, it follows that P(kp) = p for every k > 1. Hence,
P(x) takes the same value infinitely many times, a contradiction.

Example 3.5. Suppose that a,b, c are rational numbers with a + b 3
√

2 + c 3
√

4 = 0.
Show that a = b = c = 0.

First solution. If, for example, a = 0, then we get that b + c 3
√

2 = 0 and since
3
√

2 is irrational, we must have c = b = 0. One can similarly raech the same
conclusion if b = 0 or c = 0. Suppose now that a, b, c are non-zero. Without
loosing generality we can assume that a,b, c∈Z are such that gcd(a,b, c) = 1.

We know that
a + b 3

√
2 + c 3√4 = 0,

hence multiplying by 3
√

2 we get

a 3
√

2 + b 3√4 + 2c = 0.

Eliminating 3
√

4, one obtains

3
√

2(b2 − ac) + ab− 2c2 = 0.

As 3
√

2 is not rational, we must have b2 − ac = 0 and ab− 2c2 = 0. Multiply-
ing the last equality by c we get that abc− 2c3 = 0, from where b3 − 2c3 = 0,
which implies that 3

√
2 = b

c , a contradiction to the irrationality of 3
√

2. There-
fore, the only possibility is a = b = c = 0.

Second solution. If one of a, b or c is zero, then all of them must be zero.
Suppose that abc 6= 0. One can scale the such that a,b, c ∈ Z∗ are such

that gcd(a,b, c) = 1. Denote by x = a, y = b 3
√

2 and z = c 3
√

2. From the given
hypothesis, we have that x + y + z = 0. Moreover, using the identity (1.2)
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x3 + y3 + z3 − 3xyz = (x + y + z)(x2 + y2 + z2 − xy− yz− zx) = 0,

and, replacing the substitutions,

a3 + 2b3 + 4c3 = 3 · 2 · abc.

We observe that a must be even, so 2abc is divisible by 4, hence as 4 | a3 + 4c3

we deduce that b must be even. As, a,b are both even we know that 8 | 2abc
and as 8 | a3 + 2b3, we must have 8 | 4c3, hence c is even. We obtained that 2
divides a, b and c, a contradiction with gcd(a,b, c) = 1.

3.2 The pigeonhole principle (or Dirichlet’s box principle)

This principle is usually applied to problems in combinatorial set theory,
combinatorial geometry, and number theory. In its intuitive form, it can be
stated as follows.

Pigeonhole principle. If kn + 1 objects, where k≥ 1 is an integer, are distributed
among n boxes, one of the boxes will contain at least k + 1 objects.

This is merely an observation, and it was Dirichlet who first used it to
prove nontrivial mathematical results.

Example 3.6. Consider a square of side-length 1 and 5 points inside. Prove that at
least two points are situated at a distance ≤

√
2/2.

Solution. Divide the square into four congruent squares by parallel lines
to the sides, having each the length of sides 1/2. At least two points are
situated in the in a such square. But the maximum of possible distances in
this small square is given by the diagonal, and it is

√
2/2.

Example 3.7. From the set containing n arbitrary positive integers {a1, a2, . . . , an}
we can select a subset in which the sum of all elements is divisible by n.

Solution. Let us consider n subsets :

{a1},{a1, a2}, . . . ,{a1, a2, . . . , an}.

First, calculate the sum of the elements in each subset and then the remain-
ders after division by n. If some of these remainders is 0, we are done.
If none, then according to the pigeonhole principle, among these n sub-
sets there are at least two with equal remainders. Let {a1, a2, . . . , ar} and
{a1, a2, . . . , as}, r < s, be two of such subsets. Then

a1 + a2 + · · ·+ as − (a1 + a2 + · · ·+ ar) = ar+1 + ar+2 + · · ·+ as

is divisible by n, and {ar+1, ar+2, . . . , as} is a subset we seek.
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Example 3.8. Prove that every set of 10 two-digit integer numbers has two disjoint
subsets with the same sum of elements.

Solution. Let S be the set of 10 numbers. It has 210 − 2 = 1022 subsets that
differ from both S and the empty set. If A⊂ S, the sum of elements of A can-
not exceed 91+ 92+ · · ·+ 99 = 855. The numbers between 1 and 855, which
are all possible sums, are the boxes. Since the number of objects exceeds the
number of boxes, there will be two sums in the same box. Specifically, there
will be two subsets with the same sum of elements. Deleting the common
elements, we obtain two disjoint sets with the same sum of elements.

3.3 Mathematical induction

Mathematical induction is a technique used to prove that an infinite se-
quence of statements that can be indexed by the natural numbers is true. The
importance of this phrase is paramount; induction can only be used when
the statements to be proven correspond to the integers {1,2,3, . . .}. Formally,
mathematical induction is used to show that a sequence of statements

P1, P2, P3, . . . ,

hold for all n ≥ n0, where n0 is a positive integer. Pn can be any statement
depending on n: for example, ‘n is prime’, ‘n is bigger than 1’, and ‘I possess
n cows’ are all valid statements Pn. However, it would be rather strange
were we able to successfully use induction on any but the second statement.

Mathematical induction comes in three flavors: weak induction, weak in-
duction with step size s, and strong induction. Each has pros and cons:

• Standard weak induction is the simplest to use, but may not be strong
enough;

• Weak induction with step size s is a slight extension of standard weak
induction, useful for more complex problems.

• Strong induction is more complex than either weak induction, but is of-
ten hardest to apply.

All three types of induction arguments are split into two basic parts: the
base case (or cases), and the inductive step. The base case is often a simple com-
putation, whereas the theoretical arguments usually occur in the inductive
step. In addition, the term inductive hypothesis appears in some texts. This
may refer to two concepts. First, it may refer to the assumption we make
that some Pi (i ≤ k) holds in our proof that Pk+1 holds. Second, it may refer
to the statement Pk+1 itself - using this meaning, when we finish proving our
inductive step, we may write that we have proven the inductive hypothesis.
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Mathematical Induction - Weak Form:
Let Pn be a sequence of statements, and let n0 be an integer. Suppose that

the following hold:

1. Pn0 is true;
2. For k ≥ n0, Pk is true implies that Pk+1 is true.

Then we may conclude that Pk is true for all k ≥ n0.
This is mathematical induction in its purest form. A simple example of

the usefulness of this argument follows.

Example 3.9. Show that for n ≥ 1, we have

1 + 2 + · · ·+ n =
n(n + 1)

2
.

Solution. Clearly, when n = 1, we have 1 = 1(2)
2 . As n0 = 1, this is our base

case P1. Suppose that Pn holds. We want to show that

1 + 2 + · · ·+ n + (n + 1) =
(n + 1)(n + 2)

2
.

Using our inductive hypothesis, we can write

1 + 2 + · · ·+ n + (n + 1) = (1 + 2 + · · ·+ n) + n + 1 =
n(n + 1)

2
+ n + 1.

Dividing through by n + 1, we obtain n
2 + 1 = n+2

2 , which is true. This
completes our inductive step.

Let us now give an example which can be easily explained by the theory
in the next chapter. Here we explain it using induction.

Example 3.10. Show that if n people attend a party and each person shakes hands
with every other person exactly once, then the total number of handshakes is n(n−1)

2 .

Solution. Now suppose that the statement is true for any party of k people,
where 2 ≤ k ≤ n. We need to show that the statement is true for any party
of n + 1 people. When the (n + 1)-th person arrives to the party, they will
shake hands with each of the n people who are already at the party.

By the inductive hypothesis, the n people who are already at the party
have already shaken hands with each other a total of n(n−1)

2 times. Therefore,
the (n + 1)th person shakes hands with n people, adding n handshakes to
the total. This gives a total of

n(n− 1)
2

+ n =
n(n + 1)

2

handshakes, completing the induction.
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Example 3.11. 1◦ Prove that for any positive integer n,

n−1

∑
k=1

k
(k + 1)!

= 1− 1
n!

.

2◦ Show that for all integers n ≥ 3 the equation

1
x1

+
1
x2

+ · · ·+ 1
xn

= 1

is solvable in distinct positive integers.

Solution. 1◦. Let Pn be the following statement:

n−1

∑
k=1

k
(k + 1)!

= 1− 1
n!

.

We prove that the statement Pn is true for all n∈N∗ using (the weak form of)
induction on n. P1 holds trivially, as on the left we have the empty sum and
on the right 1− 1

1! = 0. Similarly, it is easy to check that P2 holds. Suppose
Pm is true. We are trying to prove Pm+1. Using the validity of Pm, we get that
the sum appearing in Pm+1 is equal to

m

∑
k=1

k
(k + 1)!

= 1− 1
m!

+
m

(m + 1)!
= 1− m + 1−m

(m + 1)!
= 1− 1

(m + 1)
.

Hence Pm+1 is true and the induction is complete.

2◦. From the first part, we know that

1
n!

+
n−1

∑
k=1

k
(k + 1)!

= 1,

so for every n≥ 3 one can choose x1 = 2!, x2 =
3!
2 = 3, x3 =

4!
3 = 8, . . ., xn−1 =

n!
n−1 and xn = n!. The terms x1, x2, . . ., xn are in strictly increasing order.

Mathematical Induction with Step Size s.

Let Pn be a sequence of statements, let n0 be an integer, and let s ≥ 2 be
an integer. Suppose that the following hold:

1. Pn0 , Pn0+1, Pn0+2, · · · , Pn0+s−1 are true;
2. For k ≥ n0, Pk is true implies that Pk+s is true.

Then we may conclude that Pk is true for all k ≥ n0.
Mathematical induction with step size s is used in a variety of problems; a

common example is to show that an expression is an integer for all values of
n (or divisibility, which is nearly equivalent). Many other interesting prob-
lems also require induction with step size s, as the three presented below.
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Example 3.12. Show that a square may be divided into n ≥ 6 smaller squares.

Solution. We will use n0 = 6 and s = 3. We first prove our base cases.
We first divide a square into 9 smaller squares, then merge 4 of them to

obtain a division into 6 squares, proving P6.
We divide a square into 4 smaller squares, dividing one of them into 4

still smaller squares to obtain a division into 7 squares. This proves P7.
We then divide a square into 16 smaller squares, then merge 9 of them to

obtain a division into 8 squares, effectively proving P9.
Using the base cases P6, P7, P8, we show the inductive step Pk implies Pk+3.
Let k ≥ 6, and suppose we may divide a square into k smaller squares.

Let S be one of these squares. If we divide S into 4 smaller squares, then we
deleted 1 square, and added 4 squares, for a net increase of 3 squares. Hence
we have a division of the square into k + 3 smaller squares. This completes
our inductive step. We may conclude that Pk holds for all k ≥ 6.

Example 3.13. Show that any n ≥ 8 can be written as a sum of 3’s and 5’s.

Solution. We will use n0 = 8 and s = 3. We first prove our base cases.
We may write 8 = 3+ 5,9 = 3+ 3+ 3,10 = 5+ 5. These establish our base

cases P8, P9, P10. We proceed to the inductive step, that Pk implies Pk+3.
Suppose that k may be written as a sum of 3’s and 5’s. Then by adding

another 3 to this summation, we may obtain a sequence of 3’s and 5’s which
sum to k + 3. Hence k + 3 can be written as a sum of 3’s and 5’s. This com-
pletes our inductive step. We may thus conclude that Pk holds for all k ≥ 8.

Example 3.14 (Erdös-Surányi). Show that for all n ≥ 1, there is a k such that

n = ±12 ± 22 ± · · · ± k2

for some choice of signs.

Solution. We use n0 = 1 and s = 4 and verify the base cases P1, P2, P3, P4.
As 1 = +12, 2 = −12 − 22 − 32 + 42, 3 = −12 + 22, 4 = −12 − 22 + 32, this

proves our base cases; we proceed to the inductive step, namely showing
that Pk is true implies Pk+4 is true. We claim that for all integers m, we have

m2 − (m + 1)2 − (m + 2)2 + (m + 3)2 = 4.

We may note that

m2 − (m2 + 2m + 1)− (m2 + 4m + 4) + (m2 + 6m + 9) = 0m2 + 0m + 4 = 4.

Now suppose that Pn holds; that is, we have n = ±12 ± 22 ± · · · ± k2 for
some k. Then we may write

(±12 ± 22 ± · · · ± k2) + (k + 1)2 − (k + 2)2 − (k + 3)2 + (k + 4)2 =

n + (k + 1)2 − (k + 2)2 − (k + 3)2 + (k + 4)2 = n + 4.
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Hence n + 4 may be written in the desired form, so Pn+4 is true. This com-
pletes our inductive step, hence Pn holds for all n ≥ 1.

Example 3.15. Let α be any real number such that α +
1
α

is an integer. Prove that

αn +
1

αn is an integer for all n ∈Z.

Solution. We may assume that n ≥ 0. Let En = αn +
1

αn. We want to prove

that En is an integer for any n≥ 0. We note that E0 = 2 ∈Z, E1 = α +
1
α
∈Z,

E2 = α2 +
1
α2 =

(
α +

1
α

)2

− 2 ∈Z. The following relation holds:

En+2 =

(
α +

1
α

)
En+1 − En, ∀n ≥ 0.

Using induction with step s = 2, we get that En is an integer, for any n ≥ 0.

Mathematical Induction - Strong Form
Let Pn be a sequence of statements, and let n0 be an integer. Suppose that

the following hold:

1. Pn0 is true;
2. For k ≥ n0, Pm being true for n0 ≤ m ≤ k implies Pk+1 is true.

Then we may conclude that Pk is true for all k ≥ n0.
Weak induction is often simpler and more intuitive, but sometimes a

statement can only be proven by strong induction. As we saw in induction
with step s, sometimes the inductive step requires more than just the previ-
ous case. If the inductive step length required is not known, strong induction
can be used to assume that all the previous cases are true.

A classical and illustrative example is the following.

Example 3.16. Prove that every positive integer can be expressed as a sum of dis-
tinct powers of 2.

Solution. We will prove this statement by strong induction on the positive
integer n. For the base case, n = 1, we see that 1 can be expressed as 20.

Now suppose that the statement is true for all positive integers less than
or equal to n. We need to show that the statement is true for n + 1. Let 2k be
the largest power of 2 that is less than or equal to n + 1. Then, n + 1− 2k is a
positive integer less than or equal to k.

By the inductive hypothesis, n + 1− 2k can be expressed as a sum of dis-
tinct powers of 2. Then, adding 2k to this expression gives a representation
of n + 1 as a sum of distinct powers of 2. Therefore, the statement is true for
n + 1, and the proof is complete.
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Oftentimes strong induction is useful not because it is the only way to
solve a problem, but because it makes a solution very elegant. This is the
case in the following problem.

Example 3.17. Show that for all k ≥ 3, and for any convex k-gon, we may draw
segments that connect two vertices which do not lie on the same edge and obtain a
division of the polygon into triangles whose vertices are among those of the polygon.
(this is called a triangulation of a polygon.)

Solution. We have n0 = 3. P3 is obviously true; we do not need to draw any
segments to triangulate a triangle. We proceed to our inductive step.

Let k≥ 3, and suppose that P3, P4, · · · , Pk are true. Draw some (k + 1)-gon
P and some segment S between two vertices of P that do not lie on the
same edge. This edge divides P into two polygons Q1 and Q2. As the total
number of vertices in Q1 and Q2 is k + 3 (both of the endpoints of S are
shared by Q1 and Q2), but as both have at least 3 vertices, it follows that
bothQ1 andQ2 have at most k vertices. Hence by our inductive hypothesis,
they can both be triangulated. But then constructing the triangulations of
Q1 andQ2, together with the segment S, provides a triangulation of P . This
proves our inductive step. It follows that Pk is true for all k ≥ 3.

The final list of examples is a selection of competition problems from the
wonderful book [9]. We recommend this resource to the reader interested in
learning about the use of induction in many areas of mathematics, including
topics that are not discussed in an competition problems-oriented book.

Example 3.18. Let n be a positive integer. Does n2 have more positive divisors of
the form 4k− 1 or of the form 4k + 1?

Solution. Let A(n) be the number of divisors of n2 which are of the form
4k− 1 and let B(n) be the number of divisors of the form 4k + 1.

After exploring a few values of A(n), B(n) for n = 1, 2, 3, we decide to
prove by strong induction that A(n) < B(n).

First note that if n = 2k is a power of 2, then we have A(n) = 0 < B(n) = 1.
If p is a prime such that p - n and p = 4m + 1, then every divisor of

(pan)2 = p2an2 of the form 4k − 1 is a power of p times a divisor of n2

of the same form. Hence A(pan) = (2a + 1)A(n). By the same reason-
ing, B(pan) = (2a + 1)B(n). So, in this case, A(n) < B(n) if and only if
A(pan) < B(pan).

Now, let p - n be a prime of the form p = 4m− 1. Then every divisor of
(pan)2 = p2an2 of the form 4k − 1 is either p2b times a divisor of n2 of the
form 4t− 1, or p2b−1 times a divisor of n2 of the form 4k + 1. More precisely,
A(pan) = (a + 1)A(n) + aB(n). With a similar argument, one can show that
B(pan) = (a + 1)B(n) + aA(n). Now, if A(n)< B(n) then, A(pan)< B(pan).

Let us now proceed to the proof. Using strong induction, assume that
A(k)< B(k) for all 1≤ k≤ n− 1. We are trying to prove that A(n)< B(n). If
n is a power of 2, then the conclusion holds by the remark at the beginning.
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Otherwise, let p be an odd prime factor of n and let a be the highest power
of p that divides n. Using the (strong) induction hypothesis, we have that
A(n/pa) < B(n/pa). As p - (n/pa), the inequalities in the previous para-
graph imply that A(n) < B(n) and the induction is complete.

The result below is commonly known as the Cauchy-Davenport theorem.

Example 3.19. Let p ≥ 3 be a prime number and denote by Fp the field with p
elements. Show that for any two non-empty subsets A, B ⊆ Fp, we have

|A + B| ≥min(|A|+ |B| − 1, p),

where A + B = {a + b | a ∈ A,b ∈ B}.

Solution. The proof we present uses strong induction on |A|. When |A|= 1,
note that |A + B| = |B|, so there is nothing to prove.

Suppose the inequality holds for any set A′ with at most k− 1 elements,
where k ≥ 2. Suppose now that |A| = k > 1. Without loosing generality, we
can assume that 0 ∈ A. This is because we can translate the set A with −a, if
a is some fixed element in A. Such a translation keeps both |A| and |A + B|
unchanged, hence it does not affect the statement of the problem.

As k ≥ 2, let x 6= 0 be an element from A. Note that if B = ∅ or B = Fp
there is nothing to prove, so we can assume that q ≤ |B| < p. Thus, there is
n ∈ Fp such that nx ∈ B but (n + 1)x /∈ B. Translating B with −nx, we get
that 0 ∈ B but x /∈ B.

First, we notice that A ∪ B + A ∩ B⊆ A + B holds trivially. This gives the
inequality |A + B| ≥ |A ∪ B + A ∩ B|.

Now A∩ B is a strict subset of A, because 0 ∈ A∩ B but x ∈ A \ B. Hence,
we can use the induction hypothesis to deduce that

|A ∪ B + A ∩ B| ≥min(|A ∩ B|+ |A ∪ B| − 1, p).

It is easy to prove that |A|+ |B| = |A ∪ B|+ |A ∩ B|, from where we get

|A + B| ≥ |A ∪ B + A ∩ B| ≥min(|A|+ |B| − 1, p),

completing the induction.

Example 3.20. Show that for every integer n ≥ 2, we can choose distinct numbers
a1, a2, . . . , an ∈ {1,2, . . . ,n} such that none of the numbers a1, a1 + a2, . . ., a1 +
a2 + . . . + an−1 is a perfect square.

Solution. If n = 2, we can choose a1 = 2, a2 = 1. For n = 3 we choose a1 = 3,
a2 = 2, a3 = 1.

We are going prove that the assertion is true using strong induction on n.
Assume that the assertion holds for any n < k, for some k ≥ 4. We are going
to show that the assertion also holds for k.
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If 1 + 2 + . . . + (k − 1) is not a perfect square, then form the induc-
tion hypothesis we know that there is a suitable choice a1, a2, . . . , ak−1 from
{1,2, . . . ,k− 1}. Using these numbers, we set ak = k and note that a1, a2, . . .,
ak−1, ak = k is a k-tuple that satisfies the required condition.

If 1 + 2 + . . . + (k − 1) = (k−1)k
2 is a perfect square, then the expression

1 + 2 + . . . + (k− 2) + k is not. By the induction hypothesis, we can choose
distinct a1, a2, . . ., ak−2 from {1,2, . . . ,k − 2} satisfying the condition in the
problem. Their sum

a1 + a2 + . . . + ak−2 = 1 + 2 + · · ·+ k− 2 =
(k− 2)(k− 1)

2

is also not a square. To justify the last claim, suppose the contrary. Then,
we can find A, B ∈N∗ such that (k − 2)(k − 1) = 2A2 and (k − 1)k = 2B2.
Multiplying the two equalities we can deduce that (k− 2)k must be a square.
But this is a contradiction with the inequality (k− 2)2 < (k− 2)k < (k− 1)2.
In this case, we choose a1, a2, . . ., ak−2, ak−1 = k, ak = k− 1 and note that the
k-tuple satisfies the requested condition. The induction is now complete

The following example appeared on shortlist of the International Mathe-
matical Olympiad in 2006.

Example 3.21. The sequence of real numbers a0, a1, a2, . . . is defined recursively by

a0 = −1,
n

∑
k=0

an−k
k + 1

= 0, for n ≥ 1.

Show that an > 0 for n ≥ 1.

Solution. We prove the statement by induction on n ≥ 1. For the base case,
we note that a1 = 1/2.

Now assume that a1, . . . , an−1 > 0 for some n ≥ 2. We note that an is pos-
itive if and only if ∑n

k=1
an−k
k+1 is negative. Now, since a1, . . . , an−1 are all posi-

tive, we know

− a0

n + 1
=

n
n + 1

·
(
− a0

n

)
=

n
n + 1

n−2

∑
k=0

an−1−k
k + 1

>
n−2

∑
k=0

k + 1
k + 2

· an−1−k
k + 1

=
n−2

∑
k=0

an−1−k
k + 2

.

The inequality above implies that

n

∑
k=1

an−k
k + 1

=
a0

n + 1
+

n−1

∑
k=1

an−k
k + 1

=
a0

n + 1
+

n−2

∑
k=0

an−1−k
k + 2

<
a0

n + 1
− a0

n + 1
= 0,

which completes the induction.





Chapter 4
Counting Strategies

Enumerative combinatorics is an area of combinatorics that deals with the
number of ways that certain patterns can be formed. In enumerative combi-
natorics, a typical problem involves efficiently counting the size of a set of
objects possessing certain properties.

4.1 Review on sets and functions

We will consider a set naively as a collection of objects called elements. We
use the boldface letters N to denote the natural numbers (nonnegative in-
tegers) and Z to denote the integers. The boldface letters R and C shall re-
spectively denote the real numbers and the complex numbers.

If S is a set and the element x is in the set, then we say that x belongs to
S and we write this as x ∈ S. If x does not belong to S we write x 6∈ S. For
example if S = {n ∈N | n is the square of an integer}, then 4 ∈ S but 2 6∈ S.
We denote by |A| the cardinality of A, that is, the number of elements that
|A| has. If a set A is totally contained in another set B, then we say that A is
a subset of B and we write this as A ⊆ B or A ⊂ B if we are sure that A 6= B.
For example, if S = {squares of integers}, then A = {1,4,9,16} is a subset of
S. If x ∈ A and x 6∈ B for some x, then A is not a subset of B, which we write
as A 6⊆ B. Two sets A and B are equal if A ⊆ B and B ⊆ A.

Example 4.1. Find all the subsets of {a,b, c}.

Example 4.2. Find all the subsets of {a,b, c,d}.

Example 4.3. Consider the set A = {a | a ∈N, 1≤ n ≤ 2009, 3|a}. Find |A|.

Solution. If a ∈ A is an element of A, than a is of the form a = 3k for some
positive integer k. Since a ≤ 2009, it follows that 3k ≤ 2009, that is k ≤ 669.
We can write A = {3k | k = 1,2, . . . ,669}, hence |A| = 1003.

79
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Example 4.4. Consider the set

A = {x | x is a positive integer and 345 < 3x < 3210}.

Find |A|.

Solution. From inequalities 345 < 3x < 3210 we get 115 < x < 1070, hence
116≤ x ≤ 1069. The cardinal number of A is |A| = 1069− 115 = 954.

The union of two sets A and B, is the set

A ∪ B = {x | x ∈ A or x ∈ B}.

This is read A union B.

The intersection of two sets A and B, is

A ∩ B = {x | x ∈ A and x ∈ B}.

This is read A intersection B.

The difference of two sets A and B, is

A \ B = {x | x ∈ A and x 6∈ B}.

The symmetric difference of two sets A and B, is the set

A∆B = (A \ B) ∪ (B \ A).

The complement of A with respect to a set X such that A ⊆ X is A = X \ A.
Observe that A is all that which is outside A. Usually we assume that A is a
subset of some universal set U which is tacitly understood. The complement
A represents the event that A does not occur.

Example 4.5. Let U = {0,1,2,3,4,5,6,7,8,9} be the universal set of the decimal
digits and let A = {0,2,4,6,8}⊂U be the set of even digits. Then A = {1,3,5,7,9}
is the set of odd digits.

Observe that
A ∩ A = Φ,

where Φ is the empty set.

De Morgan Laws: If A and B share the same universal set, we have

A ∪ B = A ∩ B;

A ∩ B = A ∪ B.

We will now prove one of the De Morgan Rules.
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Example 4.6. Prove the first De Morgan Law.

Solution. Let x ∈ A ∪ B . Then x 6∈ A∪ B. Thus x 6∈ A and x 6∈ B, that is, x ∈ A
and x ∈ B. This is the same as x ∈ A ∩ B. Therefore we have the inclusion
A ∪ B ⊆ A ∩ B.

Now, let x ∈ A∩ B. Then x ∈ A and x ∈ B. This means that x 6∈ A and x 6∈ B
or what is the same x 6∈ A ∪ B. But this last statement asserts that x ∈ A ∪ B.
Hence A ∩ B ⊆ A ∪ B. Since we have shown that the two sets contain each
other, it must be the case that they are equal.

A partition of the set S is a collection of non-empty, pairwise disjoint subsets
of S whose union is S.

Example 4.7. Let 2Z = {· · · ,−6,−4,−2,0,2,4,6, · · · } be the set of even integers
and let 2Z+ 1 = {. . . ,−5,−3,−1,1,3,5, . . .} be the set of odd integers. Then 2Z∪
2Z + 1 = Z, (2Z) ∩ (2Z + 1) = Φ, and so {2Z,2Z + 1} is a partition of Z.

Example 4.8. Let 3Z = {· · · − 9,−6,−3,0,3,6,9, · · · } be the integral multiples
of 3, let 3Z + 1 = {. . . ,−8,−5,−2,1,4,7, . . .} be the integers leaving remainder
1 upon division by 3, and let 3Z + 2 = {· · · ,−7,−4,−1,2,5,8, . . .} be integers
leaving remainder 2 upon division by 3. Then (3Z) ∪ (3Z + 1) ∪ (3Z + 2) =
Z, (3Z)∩ (3Z + 1) = Φ, (3Z)∩ (3Z + 2) = Φ, (3Z + 1)∩ (3Z + 2) = Φ, and
so {3Z,3Z + 1,3Z + 2} is a partition of Z.

The Cartesian product of two sets A and B is the set

A× B = {(a,b) | a ∈ A and b ∈ B}.

The elements of A× B are called ordered pairs.

The Cartesian product of m sets A1, . . . , Am is defined as the set

A1 × · · · × Am = {(a1, . . . , am) | a1 ∈ A1, . . . , am ∈ Am}.

The elements of A1 × · · · × Am are called ordered m-uples.

Suppose A and B are sets. A function f from A to B (denoted as f : A→ B)
is a relation associating to each a ∈ A a unique element b ∈ B. The statement
”associating” is abbreviated f (a) = b.

For a function f : A→ B, the set A is called the domain of f . (Think of
the domain as the set of possible input values for f ). The set B is called the
codomain of f . The range of f is the set { f (a) | a ∈ A}. (Think of the range
as the set of all possible output values for f . Think of the codomain as a sort
of target for the outputs). The set

G f = {(a, f (a)) | a ∈ A}

is called the graph of function f : A→ B. Clearly, we have G f ⊆ A× B.
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The identity function of the set A is 1A : A→ A, where for every a ∈ A
we have 1A(a) = a.

Two functions f : A→ B and g : C→ D are equal if A = C, B = D and
f (a) = g(a) for every a ∈ A.

A function f : A→ B is:

1. injective (or one-to-one) if for every x,y ∈ A, x 6= y implies f (x) 6= f (y);
2. surjective (or onto) if for every b ∈ B there is an a ∈ A with f (a) = b;
3. bijective if f is both injective and surjective.

Let f : A→ B, g : B→ C be two functions. The composition of g and f is
a function g ◦ f : A→ C, given by (g ◦ f )(a) = g( f (a)), (∀)a ∈ A. We have:

1. Associativity: h ◦ (g ◦ f ) = (h ◦ g) ◦ f ;
2. f ◦ 1A = f and 1B ◦ f = f ;
3. If f and g are invertible, then g ◦ f is invertible and (g ◦ f )−1 = f−1 ◦ g−1.

f : A→ B is injective⇔ there exists g : B→ A such that g ◦ f = 1A.
f : A→ B is surjective⇔ there exists g : B→ A such that f ◦ g = 1B.

If a function f : A→ B is bijective, then it has an inverse function denoted
by f−1 : B→ A, satisfying the relations f−1 ◦ f = 1A and f ◦ f−1 = 1B.

Example 4.9. The function f : R→ R defined as f (x) = x3 + 1 is bijective. For
finding its inverse we write y = x3 + 1. Solving for x produces x = 3

√
y− 1, hence

the inverse is the function f−1 : R→R, where f−1(y) = 3
√

y− 1.

4.2 Simple counting principles

We begin by stating some simple counting principles that will allow us to
solve a great wealth of combinatorics problems.

Addition Principle. If event A can occur in a ways and event B can occur in b
other ways, then the event of either A or B can occur in a + b ways.

The principle can be extended and applied for two or more events. The
addition principle can be stated in terms of sets. Let S be a finite set, and let
S1,S2, . . . ,Sn be a partition of S. That is, S1 ∪ S2 ∪ . . .∪ Sn = S, and Si ∩ Sj = ∅
when i 6= j. Then

|S| = |S1|+ |S2|+ · · ·+ |Sn|,

where |X| denotes the number of elements in the set X.

Multiplication Principle. Let A1, A2, . . . , An be n independent events, and sup-
pose that event Ai can occur in ai different ways. The total number of ways that
event A1, followed by event A2, . . . , followed by event An can occur is a1a2 · · · an.
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We can also state the multiplication principle in terms of sets, that is, if
we consider the finite sets S1,S2, . . . ,Sn and

S = S1 × S2 × · · · × Sn = {(s1, s2, . . . , sn) | si ∈ Si, 1≤ i ≤ n},

then |S| = |S1| · |S2| · . . . · |Sn|.

Example 4.10. A code for a safe is a five-digit number that can have 0 in the first
place as well in any other place. How many codes are there whose digits form an
increasing sequence?

Solution. We must consider only codes composed of different digits. With-
out the increasing order restriction we have 10 · 9 · 8 · 7 · 6 = 30240 possibil-
ities. But, only one of each of these possibilities has its digits in increasing
order. It follows that, the desired number is

30240
5 · 4 · 3 · 2 · 1 =

30240
120

= 252 =

(
10
5

)
.

Using the multiplication principle, we can prove the following, which is
often convenient when dealing with combinations and permutations.

Division Principle. If a list of length n contains every element of a set S exactly
m times, then |S| = n

m .
This principle is usually applied to problems in combinatorial set theory,

combinatorial geometry, and number theory. It can be stated as follows.
Let S be a finite set, partitioned into k parts such that each part contains

the same number of objects. Then the number of parts in the partition is

k =
|S|

number of objects in a part
.

While this may seem trivial, this principle has profound applications.

4.3 Permutations of sets

Numerous counting problems can be classified as one of the following types:

1. Count the ordered arrangements or ordered selections of objects

a. without repeating any object
b. with repetition of objects permitted (but perhaps limited).

2. Count the unordered arrangements or unordered selections of objects

a. without repeating any object
b. with repetition of objects permitted (but perhaps limited).
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Instead of distinguishing between non-repetition and repetition of ob-
jects, we will distinguish between selections from a set and a multiset.

A multiset is like a set except that its members need not be distinct. For
example, the sets {a,b} and {a, a,b} are the same, but the multisets {a,b}
and {a, a,b} are not the same. Suppose a multiset M has three a’s, one b,
two c’s and four d’s. We will indicate the multiset by {3 · a,1 · b1,2 · c,4 · d}.
The numbers 3;1;2;4 are called the repetition numbers of the multiset M.
Clearly, a set is a multiset with all repetition numbers equal to 1. We can
also allow infinite repetition numbers. Arrangements that take order into
consideration are generally called permutations and arrangements where
order is irrelevant are generally called combinations. So the four types of
counting problems can be summarized as

1. permutations of sets
2. permutations of multisets
3. combinations of sets
4. combinations of multisets

Permutations of sets

Let r be a positive integer. By an r-permutation of a set S of n elements,
we mean an ordered arrangement of r of the n elements.

For example, if S = {a,b, c}, we have three 1-permutations: a; b; c. We have
six 2-permutations: ab; ac; ba; bc; ca; cb and six 3-permutations: abc; acb; bac;
bca; cab; cba. There are no 4-permutations because the set has fewer than
four elements.

The number of r-permutations of an n element set is denoted by P(n;r).
If r > n, then P(n;r) = 0, while P(n;1) = n for every positive integer n. An
n-permutation of an n element set will be called a permutation of the set.

Theorem 4.1. For n and r positive integers with r ≤ n the following formula holds

P(n;r) = n(n− 1) · · · (n− r + 1).

Proof. There are n ways to choose the first item, n− 1 ways to choose the
second item, and so on until there are n− (r− 1) = n− r + 1 ways to choose
the rth item. Thus we have the result. �

For a nonnegative integer n, the factorial is defined by

n! = n(n− 1) · · ·2 · 1.

We use the convention that 0! = 1. We can now write

P(n;r) =
n!

(n− r)!
.
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For n ≥ 0, define P(n;0) = 1 (the number of ways to choose no items from
a set of n elements, i.e. the empty set), which agrees with the formula. The
number of permutations of a set of size n is

P(n;n) =
n!
0!

= n!.

Theorem 4.2. Let A = {a1, . . . , ak} and B = {b1, . . . ,bn} be finite sets, k≤ n. Then

1. The number of injective functions f : A→ B is P(n;k).
2. The number of bijective functions f : A→ A is k!.

Proof. There are n ways to choose f (a1), n− 1 ways to choose f (a2), and so
on until there are n− (k− 1) = n− k + 1 ways to choose the f (ak). Thus we
have n(n− 1) · · · (n− k + 1) = P(n;k) functions. �

For example, the number of words constructed with k distinct letters of
an alphabet containing n letters is P(n;k). Similarly, the number of ways to
cover a rectangle of dimension 1× k by squares 1× 1 of different colors from
n colors is P(n;k).

Circular permutations
The previous discussion thinks of objects as being in a line and are hence

referred to as linear permutations. We can also arrange items in a circle
(called, not surprisingly, circular permutations). The following serves as a
good motivating example for this notion.

Suppose six children are marching in a circle. In how many different ways
can they form their circle? Since the children are moving, what matters are
their positions relative to each other and not to their environment. Thus, it
is natural to regard two circular permutations as being the same provided
one can be brought to the other by a rotation. There are six linear permuta-
tions for each circular permutation. For example, the circular permutation
(126354) arises from each of the linear permutations

123456, 234561, 345612, 456123, 561234, 612345,

by regarding the last digit as coming before the first digit. Thus there is a
6-to-1 correspondence between the linear permutations of 6 children and
the circular permutations of 6 children. Therefore, the number of circular
permutations is 6!/6 = 5!.

Theorem 4.3. The number of circular r-permutations of n elements is given by

P(n;r)
r

=
n!

r(n− r)!
.

In particular, the number of circular permutations of n elements is (n− 1)!.



86 4 Counting Strategies

Proof. The set of linear r-permutations can be partitioned into parts such
that two linear r-permutations correspond to the same circular r-permutation
if and only if they are in the same part. The number of circular r-permutations
equals the number of parts. Since each part contains r linear r-permutations,
we apply the division principle to arrive at the result. �

An alternate way of thinking about circular permutations: If we again
consider the circular permutations of 6 children. Since we are free to rotate
the children, think of the circle as a table and child 1 is at the ”head” of the
table. With that position fixed, the circular permutations of the six children
can be identified with the linear permutations of children 2 through 5. There
are 5! linear permutations of the thee remaining children and hence 5! circu-
lar permutations of six children.

4.4 Combinations (subsets) of sets. Binomial expansion

Let S be a set of n elements. A combination of S is an unordered selection
of the elements of S. The result of such a selection is a subset of S. Let r be a
nonnegative integer. An unordered selection of r elements of S of n elements
is called an r-combination of S, also called an r-subset of S. The number of
r-subsets of an n element set is denoted (n

r). Observe the following

(
n
r

)
=


0, if r ≥ n + 1
0, if n = 0 and r ≥ 1,
1, if r = 0,
n, if r = 1,
1, if r = n.

Theorem 4.4. For 0≤ r ≤ n the following formula holds

P(n;r) = r!
(

n
r

)
,

hence
(

n
r

)
=

n!
r!(n− r)!

.

Proof. Let S be an n element set. Each r-permutation of S is found by se-
lecting r elements from S and ordering them. The number of ways to select
r elements from S is (n

r). The number of ways to order the r elements that
have been selected is r!. By the multiplication principle, we have

P(n;r) = r!
(

n
r

)
.
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Using the formula for P(n;r), we get(
n
r

)
=

P(n;r)
r!

=
n!

r!(n− r)!
,

and we are done. �

Corollary 4.1. For 0≤ r ≤ n, the following formula holds(
n
r

)
=

(
n

n− r

)
.

Example 4.11. Twenty five points are chosen in the plane so that no three of them
are collinear. How many distinct straight lines do they form ? How many distinct
triangles do they form?

Solution. Given 25 points in the plane, no tree of them collinear, the number
of distinct straight lines that can be formed by joining any two of them is
given by the number of subsets of cardinality 2 chosen from a subset of
cardinality 25, namely (25

2 ) =
25·24

2 = 300.
Each 3 distinct points determine a triangle, so to count the number of dis-

tinct triangles that can be formed by these 25 points, we can use the formula(
25
3

)
=

25!
3!(25− 3)!

=
25 · 24 · 23

3 · 2 · 1 = 2300.

Hence, we have 300 distinct straight lines and 2300 distinct triangles that
can be formed from 25 planar points, if no three of them are collinear.

Example 4.12. How many eight letter ”words” can be constructed by using the 26
letters of the alphabet if each word contains 3, 4, or 5 vowels? It is understood that
there is no restriction on the number of times a letter can be used in a word.

Solution. We can solve this problem by breaking it down into cases based
on the number of vowels in the word.

Case 1: The word contains 3 vowels. In this case, there are (8
3) ways to

choose the positions of the vowels in the word, and for each vowel position,
there are 5 choices for the vowel and 21 choices for the consonant. Therefore,
the total number of 8-letter words with 3 vowels is (8

3) · 53 · 215.
Case 2: Similarly, when the word contains 4 vowels, we get (8

4) · 54 · 214.
Case 3: When the word contains 5 vowels, we get (8

5) · 55 · 213.
Therefore, the total number of 8-letter words with 3, 4, or 5 vowels is the

sum of the results from each case:(
8
3

)
· 53 · 215 +

(
8
4

)
· 54 · 214 +

(
8
5

)
· 55 · 213.
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Theorem 4.5 (Pascal’s Formula). For all integers n,k with 1≤ k≤ n− 1, we get(
n
k

)
=

(
n− 1

k

)
+

(
n− 1
k− 1

)
.

Proof. One could prove this theorem using the formula in Theorem 1. How-
ever, we will give a combinatorial proof. Let S be a set of n elements. Choose
one specific element of S called x. Let S \ {x} be the set obtained from S by
removing x. Partition the set X of k-subsets of S into two parts, A and B. Part
A will contain all k-subsets of S that do not contain x. Part B will contain all
k-subsets of S that contain x. The size of X is (n

k) by definition. By the addi-
tion principle, we also have |X| = |A|+ |B|. The k-subsets in A are exactly
the k-subsets of the set S \ {x} of n− 1 elements, so the size of A is

|A| =
(

n− 1
k

)
.

A k-subset in B can be found by finding a k− 1- subset of the set S \ {x} of
n− 1 elements and appending an x, so the size of B is

|B| =
(

n− 1
k− 1

)
.

Combining the facts, we have(
n
k

)
=

(
n− 1

k

)
+

(
n− 1
k− 1

)
.

�

Theorem 4.6. For n ≥ 0(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
n

)
= 2n.

Proof. Let S be an n element set. Every subset of S is an r-subset of S for
r = 0,1, . . . ,n. Since (n

1) is the number of r-subsets of S, it follows that(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
n

)
= 2n

is the number of subsets of S.
We can also count the number of subsets of S by considering each element

of S in turn. For each element we have 2 options: either the element is in a
subset or it is not. So there are 2n subsets of S. The two formulas count the
same thing, so they must be equal and we have our result. �
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The numbers (n
k) count the number of k-subsets of a set of n elements.

They are called binomial coefficients and feature in the binomial theorem.
These numbers satisfy a number of identities and have interesting properties
that are useful in the analysis of algorithms.

The following properties hold:

1. For k ≤
[n

2

]
,
(

n
k

)
is a polynomial in variable n of degree k.

2. (Symmetry)
(

n
k

)
=

(
n

n− k

)
.

3. (Pascal’s formula)
(

n
k

)
=

(
n− 1

k

)
+

(
n− 1
k− 1

)
, 1≤ k ≤ n− 1.

4. (Recursive formulas)

a.
(

n
k

)
=

n
k

(
n− 1
k− 1

)
, 1≤ k ≤ n− 1.

b.
(

n
k

)
=

k + 1
n + 1

(
n + 1
k + 1

)
, 0≤ k ≤ n.

By Pascal’s formula and (n
0) = 1 and (n

n) = 1, we can derive the binomial
coefficients without using the third formula above. The results are often dis-
played in an infinite array called Pascal’s triangle.

Theorem 4.7 (Binomial expansion). Let n be a positive integer. Then for all x
and y, the following formula holds:

(x + y)n =
n

∑
k=0

(
n
k

)
xn−kyk,

a homogeneous symmetric polynomial in x and y of degree n with n + 1 terms.

Proof 1. (By counting the terms) Write (x + y)n as the product

(x + y)(x + y) · · · (x + y)

of n factors of x + y. Fully expand this product using the distributive law
and group terms alike. For each factor x + y we can choose either x or y in
(x + y)n, so there are 2n terms. Each can be arranged in the form xn−kyk for
some k = 0,1, . . . ,n. We obtain term xn−kyk by choosing y in k of the n factors
and x in the remaining n− k factors. Thus, the term xn−kyk occurs (n

k) times
in the expanded product. Hence we have our result. �

Proof 2. (By induction) Our base case n = 1 cleary holds:

(x + y)1 =
1

∑
k=0

(
1
k

)
xn−kyk = x + y.

Assuming that the theorem holds for n, we show it holds for n + 1. Write
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(x + y)n+1 = (x + y)(x + y)n,

which, by the induction hypothesis (the binomial theorem for n), becomes

(x + y)n+1 = (x + y)(
n

∑
k=0

(
n
k

)
xn−kyk)

= x(
n

∑
k=0

(
n
k

)
xn−kyk) + y(

n

∑
k=0

(
n
k

)
xn−kyk)

=
n

∑
k=0

(
n
k

)
xn−k+1yk +

n

∑
k=0

(
n
k

)
xn−kyk+1

=

(
n
0

)
xn+1 +

n

∑
k=1

(
n
k

)
xn+1−kyk +

n−1

∑
k=0

(
n
k

)
xn−kyk+1 +

(
n
n

)
yn+1.

Replace the index k by k− 1 and adjust the limits in the second summation
in the last line to obtain

n−1

∑
k=0

(
n
k

)
xn−kyk+1 =

n

∑
k=1

(
n

k− 1

)
xn+1−kyk.

Thus we have

(x + y)n+1 = xn+1 +
n

∑
k=1

[(
n
k

)
+

(
n

k− 1

)]
xn+1−kyk + yn+1,

which by Pascal’s formula can be rewritten as

(x + y)n+1 = xn+1 +
n

∑
k=1

(
n + 1

k

)
xn+1−kyk + yn+1 =

n+1

∑
k=0

(
n + 1

k

)
xn+1−kyk,

and we have our result. �

The generic term in this expansion is Tk+1 = (n
k)an−kbk and it is situated

in position k + 1. The recursive formula for the generic term is

Tk+2 =
n− k
k + 1

· b
a

Tk+1.

For x = y = 1 in the binomial expansion we get(
n
0

)
+

(
n
1

)
+ · · ·+

(
n

n− 1

)
+

(
n
n

)
= 2n.

For x = 1,y = −1 in the binomial expansion we get
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n
0

)
−
(

n
1

)
+ · · ·+ (−1)n

(
n
n

)
= 0, n ≥ 1,

hence we have(
n
0

)
+

(
n
2

)
+ · · · =

(
n
1

)
+

(
n
3

)
+ · · · = 2n−1.

4.5 Extended binomial expansion

Now we extend the definition of (n
k) to allow n to be any real number and

k any integer. Let α be a real number and let k be an integer. Define the
extended binomial coefficient as

(
α

k

)
=


α(α−1)···(α−k+1)

k! if k ≥ 1
1 if k = 0
0 if k ≤ −1

. (4.1)

Remark. In the case k ≥ 1, (α
k) is a polynomial in α of degree k with the

leading coefficient 1
k! .

Example 4.13. Compute
(

1/2
2

)
.

Solution. Using the definition we have(
1/2

2

)
=

1/2(1/2− 1)
2!

= −1
8

.

Theorem 4.8 (Extended Pascal’s Formula). For all real numbers α and all inte-
gers k, we have (

α

k

)
=

(
α− 1

k

)
+

(
α− 1
k− 1

)
.

Proof. If k ≤ −1 the relation is clear. If k = 0 this reduces to α = (α− 1) + 1,
also clear. If k ≥ 1, after simplification, the relation is equivalent to

α

k
=

α− k
k

+ 1.

which is obvious. �

Isaac Newton generalized the binomial theorem to obtain an expansion
for (x + y)α where α is any real number. In general, the expansion becomes
an infinite series and questions of convergence need to be considered. We
will restrict ourselves to a statement of the theorem and some special cases.
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Theorem 4.9 (Extended binomial expansion). Let α be a real number. Then for
all x and y, with 0≤ |x| < |y|, the following formula holds:

(x + y)α =
∞

∑
k=0

(
α

k

)
xkyα−k.

Proof. The formula is equivalent to(
1 +

x
y

)α

=
∞

∑
k=0

(
α

k

)(
x
y

)k
,

that is

(1 + t)α =
∞

∑
k=0

(
α

k

)
tk,

where t = x
y < 1. Consider the function f : (−1,1)→ R, defined by the for-

mula f (t) = (1 + t)α. By Taylor’s expansion formula, we have

f (t) = f (0) +
f ′(0)

1!
t +

f ′′(0)
2!

t2 + · · · =
∞

∑
k=0

f (k)(0)
k!

tk.

In our case we have

f (k)(t) = α(α− 1) · · · (α− k + 1)(t + 1)α−k,

hence

f (k)(0) = α(α− 1) · · · (α− k + 1),

and the formula is proved. �

In practice, the following particular form of the formula is often used:

Corollary 4.2.

(1 + t)α =
∞

∑
k=0

(
α

k

)
tk.

The generic term of the expansion is

Tk+1 =

(
α

k

)
tk,

and it is situated at the position k + 1.

Example 4.14. If |t| < 1 and n a positive integer, prove the relation



4.6 Permutations of multisets 93

1
(1− t)n =

∞

∑
k=0

(
n + k− 1

k

)
tk.

Solution. Take α = −n and obtain(
α

k

)
=

(
−n
k

)
=

(−n)(−n− 1) · · · (−n− k + 1)
k!

= (−1)k n(n + 1) · · · (n + k− 1)
k!

= (−1)k
(

n + k− 1
k

)
.

Now, from the extended binomial expansion we get

(1 + t)−n =
∞

∑
k=0

(
−n
k

)
=

∞

∑
k=0

(−1)k
(

n + k− 1
k

)
tk.

Replace t by −t and obtain

(1− t)−n =
∞

∑
k=0

(−1)k
(

n + k− 1
k

)
(−t)k

=
∞

∑
k=0

(−1)k(−1)k
(

n + k− 1
k

)
tk,

and we are done.

4.6 Permutations of multisets

Recall that a multiset is like a set except that its members need not be dis-
tinct. For example, the sets {a;b} and {a; a;b} are the same, but the multisets
{a;b} and {a; a;b} are not the same. Suppose a multiset M has three a’s, one
b, two c’s and four d’s. We will indicate the multiset by {3.a;1.b;2.c;4.d}. The
numbers 3;1;2;4 are called the repetition numbers of the multiset M. A set
is a multiset with all repetition numbers equal to 1. We can also allow infinite
repetition numbers. In this case we will use ∞ to indicate that the repetition
number is infinite.

If S is a multiset, an r-permutation of S is an ordered arrangement of r of
the objects of S. If the total number of objects in S is n (counting repetitions),
then an n-permutation of S will simply be called a permutation of S.

We note that for S = {3.a;2.b;1.c}, then abcab, baaab are 5-permutations
of S and abcaba is a permutation of S. The multiset S has no 7-permutations
since 7 > 3 + 2 + 1 = 6, the number of objects of S.
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Theorem 4.10. Let S be a multiset with objects of k different types, where each
object has an infinite repetition number. The number of r-permutations of S is kr.

Proof. In constructing any r-permutation of S, we can choose the first item
to be an object of any one of the k types. Similarly, the second item can be
an object of any one of the k types. Since the repetition numbers are infinite,
there are k ways to choose each item. By the multiplication principle there
are kr ways to choose the r items. �

Note that the conclusion of the theorem remains true if the repetition
numbers of the k different types of objects of S are all at least r (that is we
can’t run out of items of any type).

Theorem 4.11. Let S be a multiset with objects of k different types with finite repe-
tition numbers n1;n2; · · · ;nk, respectively. If the size of S is n = n1 + n2 + · · ·+ nk,
then the number of permutations of S is

n!
n1!n2! · · ·nk!

.

Proof 1. Suppose S has objects of k types, say a1, a2, . . . , ak, with repetition
numbers n1;n2; · · · ;nk for a total of n = n1 + n2 + · · · + nk objects. To de-
termine the number of n-permutations, we have to put exactly one of the
objects of S in each of n places. First decide which places will by occupied
by a1’s. There are n1 objects of type a1 in S, so there are ( n

n1
) ways to place

the a1’s. Next decide where to put the a2’s. There are n2 objects of type a2
in S and n− n1 places remaining, so there are (n−n1

n2
) ways to place the a2’s.

Continuing this, we see the number of n-permutations of S is(
n
n1

)(
n− n1

n2

)(
n− n1 − n2

n3

)
· · ·
(

n− n1 − n2 − · · · − nk−1
nk

)
which can be expressed as

n!
n1!(n− n1)!

· (n− n1)!
n2!(n− n1 − n2)!

· · · (n− n1 − n2 − · · · − nk−1)!
nk!(n− n1 − n2 − · · · − nk)!

.

This simplifies to
n!

n1!n2! · · ·nk!0!
=

n!
n1!n2! · · ·nk!

. �

Proof 2. If S has n elements, then the number of permutations of S is n!. But
for a fixed permutations, we have n1! permutations of a1’s that give the same
permutation of the multiset S. Also, we have n2! permutations of a2’s giving
the same permutation of the multiset S, and so on, nk! permutations of ak’s
that give the same permutation of the multiset S. By the division principle,

the number of all permutation of the multiset S is
n!

n1!n2! · · ·nk!
. �
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Remark. From Theorem (4.11), it follows that the number

n!
n1!n2! · · ·nk!

is an integer, that is n1!n2! · · ·nk! divides (n1 + n2 + · · ·+ nk)!.

Example 4.15. Find the number of permutations of the letters of the word

ADDRESSES.

Solution. The multiset is {1.A;2.D;2.E;1.R;3.S}. The repetition numbers are
n1 = 1;n2 = 2;n3 = 2;n4 = 1;n5 = 3, and the total number of objects is given
by n = n1 + · · ·+ n5 = 1+ 2+ 2+ 1+ 3 = 9. By the formula in Theorem 4.11,
the number of permutations is

n!
n1!n2!n3!n4!n5!

=
9!

1!2!2!1!3!
= 15120.

Theorem 4.12. Let n be a positive integer and let n1;n2; · · · ;nk be positive integers
with n = n1 + n2 + · · ·+ nk. The number of ways to partition a set of n objects into
k labeled boxes in which Box 1 contains n1 objects, Box 2 contains n2 objects and so
on is

n!
n1!n2! · · ·nk!

.

If boxes are not labeled and n1 = n2 = · · · = nk, then the number of partitions is

n!
k!n1!n2! · · ·nk!

.

Proof. First choose n1 objects for the first box. This can be done ( n
n1
) ways.

Next, choose n2 of the remaining n − n1 objects for the second box. This
can be done in (n−n1

n2
) ways. Continue in this way and by the multiplication

principle, the number of ways to partition the items is(
n
n1

)(
n− n1

n2

)(
n− n1 − n2

n3

)
· · ·
(

n− n1 − n2 − · · · − nk−1
nk

)
,

which we saw in the proof of Theorem 4.11

n!
n1!n2! · · ·nk!

.

If the boxes are not labeled and n1 = n2 = · · · = nk, for each of way of al-
locating the objects into the k unlabeled boxes, there are k! ways to attach
the labels. Thus by the division principle, the number of ways to partition n

objects equally into k unlabeled boxes is
n!

k!n1!n2! · · ·nk!
. �
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4.7 Combinations of multisets

If S is a multiset, an r-combination of S is an unordered arrangement of r of
the objects of S. If the total number of objects in S is n (counting repetitions),
then an n-combination of S will simply be S.

Example 4.16. If S = {3.a;2.b;1.c}, then the 3-combinations of S are

{3.a};{2.a;1.b};{2.a;1.c};{1.a;2.b};{1.a;1.b;1.c};{2.b;1.c}.

There are no 7-combinations as 7 > 3 + 2 + 1 = 6, the number of objects of S.

Theorem 4.13 (De Moivre). Let r be a positive integer. The equation

x1 + x2 + · · ·+ xk = r

has (r−1
k−1) positive integer solutions.

Proof. We write r as r = 1 + 1 + · · ·+ 1 + 1, where there are r copies of 1s
and r− 1 signs +. To decompose r in k summands we only need to choose
k− 1 pluses from the r− 1, which proves the theorem. �

Corollary 4.3. Let r be a positive integer. The equation

y1 + y2 + · · ·+ yk = r

has
(

n + r− 1
r− 1

)
non-negative integer solutions.

Proof. Denoting xj − 1 = yj, j = 1,2, . . . ,k, one has xj ≥ 1. Then the equation
x1 − 1 + x2 − 1 + · · ·+ xk − 1 = r is equivalent to x1 + x2 + · · ·+ xk = r + k,
which from Theorem 1, has (r+k−1

k−1 ) solutions. �

Theorem 4.14. Let S be a multiset with objects of k different types, where each
object has an infinite repetition number. Then the number of r-combinations of S is(

r + k− 1
r

)
=

(
r + k− 1

k− 1

)
.

Proof. Let the k types of objects of S be a1, a2, . . . , ak so that

S = {∞.a1;∞.a2; · · · ;∞.ak}.

Any r-combination of S is of the form

{x1.a1; x2.a2; · · · ; xk.ak},

where x1, x2, . . . , xk are nonnegative integers with x1 + x2 + · · ·+ xk = r.
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Conversely, every sequence x1, x2, . . . , xk of nonnegative integers with
x1 + x2 + · · ·+ xk = r corresponds to an r-combination of S.

Thus there is a one-to-one correspondence between the number of r-
combinations of S and the number of solutions of the equation

x1 + x2 + · · ·+ xk = r, (4.2)

where x1, x2, . . . , xk are nonnegative integers. So the number of r-combinations
of S is equal to the number of solutions to the equation (2), where x1, x2, . . . , xk
are nonnegative integers. According to the previous Corollary this number
is equal to (r+k−1

r ) = (r+k−1
k−1 ). �

Remark. 1◦. We can give a direct combinatorial argument for the formula in
the Corollary, that is to count the number of solutions to equation (2). In this
respect, let us consider the multiset

M = {r.1; (k− 1).0}.

The k− 1 0’s divided the r 1’s into k groups as follows. Let there be x1 1’s to
the left of the first 0, x2 1’s between the first and second 0, and so on, with xk
1’s to the right of the last 0. Then x1, x2, . . . , xk are nonnegative integers with
x1 + x2 + · · · + xk = r. Conversely, given nonnegative integers x1, x2, . . . , xk
with x1 + x2 + · · · + xk = r, we can construct a permutation of the multi-
set M. Thus there is a one-to-one correspondence between the number of
r-permutations of the multiset M and the number of solutions to the equa-
tion (4.2) with x1, x2, . . . , xk nonnegative, that is we have a one-to-one corre-
spondence between the number of r-permutations of M and the number of
r-combinations of S. So the number of r-combinations of S is equal to the
number of r-permutations of M which, by Theorem 4.1 is

(r + k− 1)!
r!(k− 1)!

=

(
r + k− 1

r

)
.

2◦. Note that the conclusion of the theorem remains true if the repetition
numbers of the k different types of objects of S are all at least r (i.e. we can’t
run out of items of any type).

3◦. There is no general formula for finding the number of r-combinations
of an n element multiset S = {n1.a1;n2.a2; · · · ;nk.ak}, r < n. The number of
r-combinations of S is equal to the number of integral solutions of x1 +
x2 + · · · + xk = r, where 0 ≤ x1 ≤ n1,0 ≤ x2 ≤ n2, . . . ,0 ≤ xk ≤ nk. The up-
per bounds cannot be handled the same way we treated the lower bounds.
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4.8 Multinomial expansion

We can generalize the binomial theorem to find a formula for the n-th power
of the sum of k real numbers:

(x1 + x2 + · · ·+ xk)
n.

In general, the role of the binomial coefficients is taken over by numbers
called multinomial coefficients, defined as(

n
n1, n2, . . . , nk

)
=

n!
n1!n2! · · ·nk!

,

where n1,n2, . . . ,nk are nonnegative integers with n1 + n2 + · · ·+ nk = n.
Recall that this number represents the number of permutations of a mul-

tiset of n objects of k different types with repetition numbers n1,n2, . . . ,nk,
respectively. The binomial coefficients are just multinomial coefficients with
k = 2, which gives (

n
j

)
=

(
n

j,n− j

)
,

and represent the number of permutations of a multiset of n objects of 2
types with repetition numbers j and n− j, respectively.

Theorem 4.15 (Pascal’s formula for multinomials). For the positive integers
n, n1, n2,. . . , nk with n1 + n2 + · · ·+ nk = n, the following formula holds:(

n
n1,n2, . . . ,nk

)
=

(
n− 1

n1 − 1,n2, . . . ,nk

)
+ · · ·+

(
n− 1

n1,n2, . . . ,nk − 1

)
.

Proof. Just replace the formula of the multinomial coefficients and, after
simplification we get the equivalent form

n
n1n2 · · ·nk

=
1

n2 · · ·nk
+ · · ·+ 1

n1 · · ·nk−1
,

which is clearly true. �

Theorem 4.16 (Multinomial expansion). Let n be a positive integer. For all
x1, x2, . . . , xk the following formula holds:

(x1 + x2 + · · ·+ xk)
n = ∑

(
n

n1,n2, . . . ,nk

)
xn1

1 xn2
2 · · · x

nk
k ,

where the summation extends over all nonnegative integral solutions n1,n2, . . . ,nk
of the equation n1 + n2 + · · ·+ nk = n .
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Proof. Write (x1 + x2 + · · · + xk)
n as a product of n factors, each equal to

(x1 + x2 + · · ·+ xk). Completely expand the product, using the distributive
law and collect like terms. For each of the n factors, we choose one of the
k numbers x1, x2, . . . , xk and form their product. There are kn terms that re-
sult this way, and each can be arranged in the form xn1 xn2 · · · xnk , where
n1,n2, . . . ,nk are nonnegative integers summing to n. We obtain the term
xn1

1 xn2
2 · · · x

nk
k by choosing x1 in n1 of the n factors, x2 in n2 of the remain-

ing n− n1 factors, on down to xk in nk of the remaining n− n1 − · · · − nk−1.
By the multiplication principle, the number of times the term xn1

1 xn2
2 · · · x

nk
k

is given by(
n
n1

)(
n− n1

n2

)(
n− n1 − n2

n3

)
· · ·
(

n− n1 − n2 − · · · − nk−1
nk

)
,

which we know from the proof of Theorem 4.11, is equal to

n!
n1!n2! · · ·nk!

=

(
n

n1,n2, . . . ,nk

)
.

�

Remark. The number of terms in the multinomial expansion is the number
of solutions in nonnegative integers of the equation n1 + n2 + · · ·+ nk = n.
According to Corollary 4.3, this is given by(

n + k− 1
n

)
.

In case k = 2, by the previous formula we obtain(
n + 2− 1

n

)
=

(
n + 1

n

)
= n + 1,

i.e. the number of terms in the classical binomial expansion (x1 + x2)
n.

For example, consider the multinomial with k = 3 and n = 3, that is

(x1 + x2 + x3)
3.

After expansion we will find
(

3 + 3− 1
3

)
=

(
5
3

)
= 10 terms. These are

x3
1 + x3

2 + x3
3 + 3x2

1x2 + 3x1x2
2 + 3x2

2x3 + 3x2x2
3 + 3x2

1x3 + 3x1x2
3 + 6x1x2x3.
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4.9 Inclusion-exclusion principle

We saw that if A1 and A2 are disjoint finite sets, then |A1 ∪ A2|= |A1|+ |A2|.
If A1 and A2 intersect, then |A1| + |A2| counts the number of elements in
A1 ∩ A2 twice, so we must subtract off the number of elements in A1 ∩ A2,
hence we have the formula :

Inclusion-exclusion principle for two sets. If A1, A2 are two finite sets, then

|A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|.

Example 4.17. How many integers from 1 to 500 are divisible by 3 or by 7?

Solution. Let A be the set consisting in all integers from 1 to 500 which are
divisible by 3. Consider B, the set of all integers from 1 to 500, divisible by
7. We have to find |A ∪ B|. We write A and B as follows:

A = {3k | 1≤ 3k ≤ 500},
B = {7l | 1≤ 7l ≤ 500}.

In order to calculate |A|we need to find the largest k such that 3k≤ 500. This
is 166, hence |A| = 166. In similar way, for |B| we need to find the largest
integer l with 7l ≤ 500 and we get |B| = 71.

Applying the inclusion-exclusion principle for two sets we have

|A ∪ B| = |A|+ |B| − |A ∩ B| = 166 + 71− |A ∩ B| = 237− |A ∩ B|.

The set A ∩ B consists in all integers from 1 to 500 which are divisible by 3
and by 7, hence we can write

A ∩ B = {21s | 1≤ 21s ≤ 500}

The largest s with property 21s ≤ 500 is 23, that is |A ∩ B| = 23. Finally, it
follows |A ∪ B| = 237− |A ∩ B| = 237− 23 = 214.

Inclusion-exclusion principle for three sets. If A1, A2, A3 are finite sets, then

|A1 ∪ A2 ∪ A3| = |A1|+ |A2|+ |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|
+ |A1 ∩ A2 ∩ A3|.

Example 4.18. How many integers from 1 to 2009 are divisible by 5 or by 7 or by
9 ?

Solution. Let A be the set of integers from 1 to 2009 which are divisible by 5,
B which are divisible by 7 and C which are divisible by 9. We have 5k≤ 2009
is equivalent to k ≤ 401, hence |A| = 401. Also, 7k ≤ 2009 is equivalent to
k ≤ 287, so |B| = 281. From 9k ≤ 2009, we get k ≤ 223, that is |C| = 223.
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In order to find |A ∩ B|, observe that 35k ≤ 2009 is equivalent to k ≤ 57.
Also, 45k ≤ 2009, gives k ≤ 44, and 63k ≤ 2009, gives k ≤ 31. In this way we
obtain |A ∩ B| = 57, |A ∩ C| = 44 and |B ∩ C| = 31.

In order to find |A ∩ B ∩ C|, observe that 5 · 7 · 9k ≤ 2009 is equivalent to
k ≤ 6, hence |A ∩ B ∩ C| = 6.

Applying the inclusion-exclusion principle for three sets we get

|A ∩ B ∩ C| = |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|+ |A ∩ B ∩ C|
= 401 + 281 + 223− 57− 44− 31 + 6 = 769.

Theorem 4.17 (Inclusion-exclusion, general form). If A1, A2, . . . , Am are fi-
nite sets, then the following formula holds:

|A1 ∪ A2 ∪ · · · ∪ Am| = ∑
1≤i≤m

|Ai| − ∑
1≤i<j≤m

|Ai ∩ Aj|

+ ∑
1≤i<j<k≤m

|Ai ∩ Aj ∩ Ak|+ · · ·

+ (−1)m|A1 ∩ A2 ∩ · · · ∩ Am|.

Proof. Proceed by induction on m. For m = 2 and m = 3 the formula was
proved in the previous particular cases. For the the induction step, just write

A1 ∪ A2 ∪ · · · ∪ Am ∪ Am+1 = (A1 ∪ A2 ∪ · · · ∪ Am) ∪ Am+1 = A ∪ Am+1,

where A = A1 ∪ A2 ∪ · · · ∪ Am. From inclusion-exclusion principle for two
sets we obtain

|A1 ∪ A2 ∪ · · · ∪ Am ∪ Am+1| = |A ∪ Am+1| = |A|+ |Am+1| − |A ∩ Am+1|,

then use A ∩ Am+1 = (A1 ∩ Am+1) ∪ (A2 ∩ Am+1) ∪ · · · ∪ (Am ∩ Am+1) and
apply the induction hypothesis. Finally group the resulting terms. �

Euler’s totient function. For any positive integer n denote by ϕ(n) the num-
ber of integers m such that m < n and gcd(m,n) = 1.

The arithmetic function ϕ is called Euler’s totient function. Clearly,
ϕ(1) = 1 and for any prime p we have ϕ(p) = p − 1. Moreover, if n is a
positive integer such that ϕ(n) = n− 1, then n is a prime.

If n = pα1
1 pα2

2 · · · p
αk
k , then we have the formula

ϕ(n) = n
(

1− 1
p1

)(
1− 1

p2

)
· · ·
(

1− 1
pk

)
.

For the proof we employ the inclusion-exclusion principle. For each index
i = 1, . . . ,k consider the set

Ti = {d | d ≤ n and pi|d}.
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It follows that

T1 ∪ · · · ∪ Tk = {m | m ≤ n and gcd(m,n) > 1}.

Hence, we obtain

ϕ(n) = n− |T1 ∪ · · · ∪ Tk|

= n−
k

∑
i=1
|Ti|+ ∑

1≥i<j≤k
|Ti ∩ Tj| − · · ·+ (−1)k|T1 ∩ · · · ∩ Tk|.

On the other hand, we have

|Ti| =
n
pi

, |Ti ∩ Tj| =
n

pi pj
, . . . , |T1 ∩ · · · ∩ Tk| =

n
p1 · · · pk

.

Finally,

ϕ(n) = n−
k

∑
i=1

n
pi

+ ∑
1≥i<j≤k

n
pi pj
− · · ·+ (−1)k n

p1 · · · pk

= n
(

1− 1
p1

)(
1− 1

p2

)
· · ·
(

1− 1
pk

)
,

and formula is proved.

The number of surjective functions. Let M and N be finite sets, and
m = |M| and n = |N| their cardinalities. Counting the functions of the form
f |M→ N is easy. Each x ∈M has n choices for its image, the choices are in-
dependent, and therefore the number of functions is nm. How many of these
functions are surjective ? To answer this question, let N = {y1,y2, . . . ,yn} and
let Ai be the set of functions in which yi is not the image of any element in
M. Writing A for the set of all functions and S for the set of all surjective
functions, we have

S = A− (A1 ∪ · · · ∪ An).

We already know |A|. Similarly, |Ai| = (n − 1)m . Furthermore, the size of
the intersection of k of the Ai is

|Ai1 ∩ · · · ∩ Aik | = (n− k)m.

We can now use inclusion-exclusion principle to get the number of functions
in the union, namely,

|A1 ∪ · · · ∪ An| =
n

∑
k=1

(−1)k+1
(

n
k

)
(n− k)m.
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To get the number of surjective functions, we subtract the size of the union
from the total number of functions

sm,n = |S| =
n

∑
k=0

(−1)k
(

n
k

)
(n− k)m.

For m < n , this number should be 0 , and for m = n , it should be n!.
Finally, we can write

sm,n =


∑n

k=0(−1)k(n
k)(n− k)m if m ≥ n

n! if m = n
0 if m < n

(4.3)

Derangements. Since the actual nature of the objects does not matter, we
may take X to be the set {1,2, · · · ,n} in which the location of each of the
integers is that specified by its position in the sequence 1,2, . . . ,n.

A derangement of {1,2, . . . ,n} is a permutation i1i2 · · · in of {1,2, . . . ,n}
with i1 6= 1, i2 6= 2, . . . , in 6= n, i.e., a derangement of {1,2, . . . ,n} is a permuta-
tion i1i2 · · · in of {1,2, . . . ,n} in which no integer occupies its natural position.

We denote the numbers of derangements of {1,2, . . . ,n} by Dn. For n = 1,
there is no derangement. For n = 2, there is only one derangement: 21. For
n = 3, there are two derangements: 231 and 312. The derangements for n = 4
are 2143 ; 3142 ; 4123 ; 2341 ; 3412 ; 4312 ; 2413 ; 3421 ; 4321. Thus we have 9
derangements in this case. These examples show that

D1 = 0; D2 = 1; D3 = 2; D4 = 9.

For n ≥ 1, the following formula holds true

Dn = n!
(

1− 1
1!

+
1
2!
− 1

3!
+ · · ·+ (−1)n

n!

)
. (4.4)

In order to prove formula (4.4), consider S to be the set of all n! permutations
of {1,2, . . . ,n}. For j = 1,2, . . . ,n, let Pj be the property that, in a permutation,
j is in its natural position. A permutation of {1,2, . . . ,n} is a derangement
if it has none of properties P1, P2, . . . , Pn. Denote by Aj the set of permuta-
tions of {1,2, . . . ,n} with Pj, j = 1,2, . . . ,n. The derangements of {1,2, . . . ,n}
are precisely those permutations in S \ (A1 ∪ A2 · · · ∪ An). Hence

Dn = |S| − |A1 ∪ A2 · · · ∪ An| = n!− |A1 ∪ A2 · · · ∪ An|.

We now calculate |A1 ∪ A2 · · · ∪ An| by using inclusion-exclusion formula.
The permutations in A1 have the form 1i2 · · · in, where i2 · · · in is a permu-

tation of the set {2, . . . ,n}. Thus |A1| = (n− 1)!.
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In the same way, we have

|Aj| = (n− 1)!.

The permutations in A1 ∩ A2 are of the form 12i3 · · · in, where i3 · · · in is a
permutation of {2, . . . ,n}. Thus |A1 ∩ A2| = (n− 2)!. Similarly,

|Ai ∩ Aj| = (n− 2)! for i 6= j.

The permutations in A1 ∩ A2 ∩ · · · ∩ Ak have the form 12 · · · kik+1 · · · in where
ik+1 · · · in is a permutation of { fk+1, . . . ,n}. Thus |A1 ∩ A2 · · ·Ak| = (n− k)!.
A similar argument shows that

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik | = (n− k)!

for any k-subset {i1, i2, . . . , ik} of {1,2, . . . ,n}. Since there are (n
k) k-subsets of

{1,2, . . . ,n}, by the inclusion-exclusion principle, we have

Dn = n!−
(

n
1

)
(n− 1)! +

(
n
2

)
(n− 2)! + · · ·+ (−1)n

(
n
n

)
(n− n)!

= n!− n!
1!

+
n!
2!
− n!

3!
+ · · · (−1)n n!

n!

= n!
(

1− 1
1!

+
1
2!
− 1

3!
+ · · · (−1)n 1

n!

)
.

Recall the Taylor series for the exponential function

ex =
∞

∑
j=0

xn

n!
.

So we have

e−1 = 1− 1
1!

+
1
2!
− 1

3!
+

1
4!
− · · ·

Therefore, for a fixed n, the probability to extract a derangement out of
the n! permutation is

Dn

n!
= 1− 1

1!
+

1
2!
− 1

3!
+

1
4!
− · · · (−1)n 1

n!
.

Notice that Dn
n! →

1
e for n→∞.

The following recursive formulas for the number of derangements hold:

Dn = nDn−1 + (−1)n

Dn = (n− 1)(Dn−2 + Dn−1), n = 3,4,5, . . .
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4.10 Counting by a bijection

This is a basic method of counting which is very useful in many concrete
problems. We first revisit some results given earlier in Section 4.1.

Let A and B be two sets. A function f : A→ B is called:

• one-to-one or injective if for all a,b ∈ A we have f (a) = f (b)⇒ a = b.
• onto or surjective if for all b ∈ B there exists an a ∈ A such that f (a) = b.
• bijective if the function is one-to-one and onto.

The following properties of injective, surjective and bijective functions
are relevant for counting problems:

• If there is an injective function f : A→ B, then |A| ≤ |B|.
• If there is a surjective function f : A→ B, then |A| ≥ |B|.
• If there is a bijective function f : A→ B, then |A| = |B|.

The key point of the last property is that whenever counting the number
of objects in a given set A presents a challenge, an alternative is to establish
a bijection between A and another set B whose cardinal is easier to find.

If a bijection f : A→ B exists, then there is also a bijection g : B→ A. Here

we provide some classical examples of counting with bijections.

Example 4.19. Let m,n be positive integers. How many increasing functions f :
{1,2, . . . ,n} → {1,2, . . . ,m} can one define?

Solution. Denote the following sets of functions:

A = { f : {1,2, . . . ,n} → {1,2, . . . ,m}, f is increasing}
B = {g : {1,2, . . . ,n} → {1,2, . . . ,m}, g is strictly increasing}.

The function h : A→ B defined by h( f (i)) = f (i) + i− 1 = g(i), i = 1, . . . ,n
is a bijection between A and B, and clearly, |B| = (n+m−1

m ).

Example 4.20. In a single-elimination tournament there are n people competing.
How many matches are needed to decide the champion?

Solution. There is a bijection between the set of eliminated players and the
set of matches played. To decide the single winner, n − 1 players must be
eliminated, therefore n− 1 are required for deciding the champion.

Example 4.21. A set S of integers is called fat if each of its elements is greater or
equal to |S|. For example, the empty set, or the set {5,6,7,8} are fat, while the
set {1,2,3} is not. Establish a recursion for the sequence ( fn)∞

n=0, where fn is the
number of fat subsets of {1, . . . ,n}.
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Solution. We split the subsets of {1,2, . . . ,n + 1} into those which contain
n + 1, and those who do not (whose number is actually fn, as they are in fact
fat subsets of {1, . . . ,n}.)

The number of fat subsets containing n + 1 are in a bijective corre-
spondence with the fat subsets of {1,2, . . . ,n − 1}, through the mapping
{x1, x2, . . . , xk,n + 1} 7→ {x1 − 1, x2 − 1 . . . , xk − 1}, where x1 < x2 < · · · < xk.
It follows that there are fn−1 fat subsets of {1, . . . ,n+ 1}which contain n+ 1,
hence the desired recurrence relation is

fn+1 = fn + fn−1, n ≥ 2,

where f1 = 2 (fat sets: ∅ and {1}) and f2 = 3 (fat sets: ∅, {1} and {2}).
Clearly, the fat sets for n = 3 are ∅, {1}, {2}, {3} and {2,3}, hence f3 = 5.
Notice that fn = Fn+2, n ≥ 1, where (Fn)n≥0 is the Fibonacci sequence.

Example 4.22. Let m, n be positive integers, and consider an m × n rectangular
grid. How many paths are there from (0,0) to (m,n), following the grid lines and
only moving up or right?

Solution. Each path from (0,0) to (m,n) following the grid lines and only
moving up or right consists of exactly n + m segments, being uniquely de-
fined by the position of n vertical steps (the other m being horizontal steps).
Hence, the set of such paths is in a bijective correspondence with the subsets

of {1,2, . . . ,m + n} with n elements, so the answer is
(

n + m
n

)
=

(
n + m

m

)
.

Example 4.23 (Catalan numbers). Prove that the number of lattice paths from
the point (0,0) to (n,n) following the grid lines, located lower than, or on the bi-

sector line y = x is Cn =
1

n + 1

(
2n
n

)
.

These numbers recover the Catalan sequence (Cn)n≥0 (A000108 in OEIS [190]),
and starting with 1,1,2,5,14,42,132,429,1430,4862,16796,58786, . . . .

Solution. First, notice that each path going from (0,0) to (n,n) contains n
steps to the right, and n steps upwards. For each such path going above the
diagonal we associate another path, as follows:
1) keep all steps until going above the diagonal for the first time unchanged;
2) swap all remaining steps (right become up, up become right).
If the first point reached above the diagonal is (k,k + 1), then the initial path
contained k + (n − k) = n steps to the right, and (k + 1) + (n − k − 1) = n
steps upwards. The new path will then have k + (n− k − 1) = n− 1 steps
to the right and (k + 1) + (n− k) = n + 1 steps upwards, hence it will end
at (n− 1,n + 1). This mapping is well defined and bijective, so the number
of lattice paths from (0,0) to (n,n) not going above the diagonal, is actually
equal to the total number of paths from (0,0) to (n− 1,n + 1). Therefore

Cn =

(
2n
n

)
−
(

2n
n + 1

)
=

1
n + 1

(
2n
n

)
.
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Example 4.24. A triangular grid is obtained by tiling an equilateral triangle of side
length n by n2 equilateral triangles of side length 1, whose sides are parallel to the
big triangle. Determine the number of

1) rhombi of side length 1.
2) parallelograms.

Solution. 1) Each short lattice segment within the triangle, can be the diag-
onal of exactly one rhombus (so there is a bijection between the two sets),
hence the answer is

3(1 + · · ·+ n− 1) = 3
n(n− 1)

2
,

as each of the sides of the big triangles has n segments of length 1, which are
discounted from the total count.

2) A parallelogram has the sides parallel to the sides of the original trian-
gle. One may notice that extending the sides of the parallelogram, they in-
tersect the a line parallel to the third side and having n + 1 segments (hence
n + 2 points) in 4 points. This shift of one position is to allow one to count
the parallelograms having one vertex on the non-parallel line. The set of
parallelograms and the set of quadruples selected from amongst these n + 2
points on the line are in bijective correspondence, so the number of parallel-
ograms (accounting for each of the 3 orientations) is 3(n+2

4 ).

Example 4.25. Here we have other examples related to the Catalan sequence.

1) Prove that the number of expressions containing n pairs of correctly matched
brackets is Cn. For n = 3, the correctly matched brackets are

()()(), ()(()), (())(), (()()), ((())).

2) Prove that the number of increasing functions f : {1, . . . ,n} → {1, . . . ,n} with
the property f (x) ≤ x, x = 1, . . . ,n is Cn.

3) Show that the number of sequences (a1, . . . , a2n+1) with nonnegative terms such
that a1 = a2n+1 = 0 and |ai − ai+1| = 1 for i = 1, . . . ,2n is Cn.

4) Prove that Cn satisfies the recurrence relation

Cn = Cn−1C0 + Cn−2C1 + · · ·+ C1Cn−1 + C0Cn−1.

Solution. 1) The valid bracket combinations can be put in bijective corre-
spondence with the paths in Example 4.23, associating the “(” brackets with
steps to the right, and the “)” brackets with steps upwards.

2) We associate each function f : {1, . . . ,n}→ {1, . . . ,n} satisfying f (x)≤ x
for x = 1, . . . ,n with the Catalan path having the highest point in column i− 1
equal to (i− 1, f (i)− 1), i = 2, . . . ,n.
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3) The paths in Example 4.23, can be put in a bijective correspondence
with a sequence, by associating a number ai, i ≥ 2 with a step to the right if
ai−1 < ai and with a step upwards otherwise.

4) One can count the Catalan paths based on the first point reached on
the diagonal, after (0,0). If the first point of the path on the diagonal is (k,k),
k = 1, . . . ,n, then the number of paths from (0,0) to (k,k) with this property
is the number of Catalan paths from (1,0) to (k,k− 1) (as the first segment
is horizontal, while the last one is vertical), that is Ck−1, with C0 = 1. Once
(k,k) is reached, the number of Catalan paths from (k,k) to (n,n) is Cn−k,
hence we have exactly Ck−1Cn−k paths hitting the diagonal first time at the
point (k,k), k = 1, . . . ,n. Summing over k = 1, . . . ,n we obtain the formula.

Example 4.26. Consider the permutations (x1, x2, . . . , x2n) of set {1,2, . . . ,2n}.
Determine if the number of permutations having the property |xi − xi+1| = n for
at least one value i ∈ {1, . . . ,2n− 1}, is greater then the number of permutations
which do not have this property.

Solution. Let us call two numbers x,y ∈ {1,2, . . . ,2n} twins if |x − y| = n,
and a permutation (x1, x2, . . . , x2n) of this set will be called of type Tk if there
are exactly k pairs of twins, i.e., there are exactly k indices i with the prop-
erty |xi − xi+1| = n. Let us define the mapping f : T0 → T1 as follows. If
(x1, x2, . . . , x2n) ∈ T0 and xk, k > 2 is the twin of x1, then

f (x1, x2, . . . , x2n) = (x2, . . . , xk−1, x1, xk, . . . , x2n).

Notice that the mapping is injective but not surjective, hence the number of
permutations with at least one pair of neighbouring twins is greater than the
number of permutations without pairs of neighboring twins.

Example 4.27. Prove that the number of subsets with k elements of {1, . . . ,n}, in
which no numbers are consecutive is (n−k+1

k ).

Solution. We associate the subsets of S ⊆ {1, . . . ,n} with binary words
a1a2 . . . an for which ai = 1 whenever i ∈ S and ai = 0 otherwise. A set S hav-
ing no consecutive integers is represented by a binary word with no consec-
utive 1’s, hence there is a bijection between them and the number of words
having k values equal to 1, n− k values equal to 0, and no consecutive 1’s.
To compute the cardinal of this set, we label the n− k digits equal to 0 from
1 to n− k. Between them we have to add k digits 1, avoiding consecutive 1’s.
Hence, each digit 1 is preceded by a 0 digit, indicated by it’s label 0, . . . ,n− k
(this can be 0 as well, when the word starts with 1). This can be done in
exactly (n−k+1

k ) ways, which ends the proof.

Example 4.28. Three people A, B, C play the following game: for a fixed positive
integer k ≤ 2022, a subset of {1,2, . . . ,2022} with k elements is randomly chosen,
with an equal probability of each choice. The winner is decided based on the reminder
of the sum of the chosen numbers when divided by 3: A for 0, B for 1 and C for 2.
For which values k is the game fair, and who has the best odds when it is not?
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Solution. Let us split the set {1,2, . . . ,2022} into sets Xj = {3j− 2,3j− 1,3j},
j = 1, . . . ,674. Denote by F the family of all subsets Y ⊆ {1,2, . . . ,2022} with
k elements with the property |Y ∩ Xj| = 1 or |Y ∩ Xj| = 2 for some j.

Let j0 be the smallest such j, and define Y′ as the set with k elements
obtained by replacing in Y the elements in Y ∩ Xj0 with the ones following
cyclically inside Xj0 (i.e., shifting to the right adds 1 to the sum in the first
case, or 2 in the second case). Applying this process to Y′, we obtain the set
Y
′′
, and applying again to Y

′′
we get Y

′′′
. Denoting by s(Y) the modulo 3

sum of the elements in set Y, one can check that s(Y), s(Y′) and s(Y
′′
) are

distinct, while Y
′′′
=Y. Thus, this operator ′ gives a bijective correspondence

between the three families P0,P1,P2 ⊆F for with the property s(P0) = 0 for
P0 ∈ P0, s(P1) = 1 for P1 ∈ P1, and s(P2) = 2 for P2 ∈ P2.

When k (mod 3) = 0, then the elements not belonging to F are those
formed of unions of several triads. As the sum of elements in each such
triad is divisible by 3, then player A has the advantage. For k (mod 3) 6= 0,
each set B with k elements belongs to F , hence the game is fair.

Example 4.29. Let k and n be positive integers. Denote by A the set of all sequences
a = (a1, . . . , ak) whose integer entries satisfy 0 ≤ ai ≤ n, i = 1, . . . ,k. If m(a) =
min{a1, a2, . . . , ak} and M(a) = max{a1, a2, . . . , ak}, show that

∑
a∈A

(m(a) + M(a)) = n (n + 1)k .

Solution. Clearly, |A|= (n + 1)k. To each sequence a = (a1, a2, . . . , ak) we can
associate the sequence a′ = (n − a1,n − a2, . . . ,n − ak), through a bijective
correspondence between A and A. Since M(a′) = n−m(a), one obtains

∑
a∈A

(m(a) + M(a)) = ∑
a∈A

m(a) + ∑
a′∈A

M(a′)

= ∑
a∈A

m(a) + ∑
a∈A

[n−m(a)]

= n|A| = n (n + 1)k .

Example 4.30. Let 1 ≤ k ≤ n be positive integers. For each subset of {1,2, . . . ,n}
with k elements, we consider the minimal element. Prove that the arithmetic mean
of these minima is n+1

k+1 .

Solution. The set A of {1,2, . . . ,n} with k elements indexed as (a1, . . . , ak)
with 1≤ a1 < a2 < · · ·< ak ≤ n are in bijective correspondence with the set B
containing the sets (b1, . . . ,bk+1) with k + 1 elements, having the sum n + 1.
This bijection can be defined by the formula

(a1, . . . , ak) 7→ (a1, a2 − a1, . . . , ak − ak−1,n + 1− ak).
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The problem reduces to computing the aritmetic mean of b1, over all config-
urations (b1, . . . ,bk+1) having the sum n + 1. Notice that the elements in this
(k + 1)-tuple can be permuted, hence the arithmetic mean of b1 is also equal
to the arithmetic mean of bj, j = 1, . . . ,k + 1. One obtains

1
(k + 1) |B| ∑

(b1,...,bk+1)∈B
(b1 + · · ·+ bk+1)

(n + 1) |B|
(k + 1) |B| =

n + 1
k + 1

.

4.11 Counting in two ways

This is a specific method in combinatorics. Here are a few examples.

Example 4.31. Prove the following identities:

1)
(

n
k

)
=

(
n− 1
k− 1

)
+

(
n− 1

k

)
.

2)
(

a + b
n

)
=

n

∑
k=0

(
a
k

)(
b

n− k

)
(Vandermonde).

3)
(

n
k

)(
k
m

)
=

(
n
m

)(
n−m
k−m

)
, where n ≥ k ≥ m are integers.

4)
m

∑
k=0

(
m
k

)(
n + k

m

)
=

m

∑
k=0

(
m
k

)(
n
k

)
2k.

Solution. 1) Let us label a set of n objects by O1,O2, . . . ,On. Clearly, (n
k) is

the number of ways of selecting k objects out of n. For each value of k, we
have two mutually exclusive possibilities. Either On is taken, in which case
the remaining k− 1 objects can be chosen in (n−1

k−1) ways, or On is not taken,
when the k objects can be chosen in (n−1

k ) ways. This confirms the identity.

2) Let A and B be two disjoint sets with cardinals |A|= a and |B|= b. With
these notations, the expression on the left represents the ways of choosing a
subset X ⊆ A∪ B having n elements. We are now summing over all possible
intersections X ∩ A and X ∩ B. The intersection X ∩ A may have k = 0, . . . ,n
elements, and since the sets A, B are disjoint, one must have |X ∩ B|= n− k.
For each value of k = 0, . . . ,n, there will be (a

k) ways to select the set X ∩ A,
and ( b

n−k) ways to select the elements in X ∩ B. We notice that in certain
cases, some of terms in the right-hand side will may be equal to zero.

3) We first notice that unless m ≤ k ≤ n, the identity holds trivially with
both side equal to zero. Let A be a set with n elements. For given integers
m≤ k≤ n, the left-hand side corresponds to the number of choices for a pair
of subsets (B,C) with the properties |B|= k, |C|= m and C⊆ B⊆ A. Clearly,
B can be chosen in (n

k) ways, while C can be chosen in ( k
m) distinct ways.
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The right-hand side also counts the pair of subsets (B,C) with the prop-
erties |B| = k, |C| = m and C ⊆ B ⊆ A, but now first choosing the set C ⊆ A,
possible in (n

m). Apart from the m elements from C, the set B \ C has other
k−m other elements, which are selected from the remaining n−m elements
of A \ C, for a total of (n−m

k−m) choices.

4) To count the right-hand side one may consider two disjoint sets A and
B with cardinals |A| = m and |B| = n.

For a fixed positive integer k, the number of pairs of sets (X,Y) having
cardinals |X| = k and |Y| = m, satisfying X ⊆ A and Y ⊆ B ∪ X is given by
(m

k )(
n+k

m ). Summing over all k = 0, . . . ,m the left-hand side expression repre-
sents the number of pairs (X,Y) satisfying X⊆ A and Y⊆ B∪X and |Y|= m.

These pairs can be placed in bijective correspondence with the triples
(Y ∩ B,Y ∩ A, X \Y), satisfying X ⊆ A and Y ⊆ B ∪ X and |Y| = m. These
can be counted by first choosing Y ∩ B, then Y ∩ A and finally X. When
|Y ∩ B| = k there are (n

k) choices for Y ∩ B, ( m
m−k) choices for Y ∩ A and 2k

choices for Y \ X (as each of the k elements in A \ Y may belong, or not to
X). Summing over all values of k we obtain the desired result.

Example 4.32. Let n be a positive integer. Prove that

τ(1) + τ(2) + · · ·+ τ(n) =
⌊n

1

⌋
+
⌊n

2

⌋
+ · · ·+

⌊n
n

⌋
,

where τ(k) represents the number of divisors of the positive integer k.

Solution. Both sums represent the number of pairs (a,b) of positive integers
satisfying a | b and b≤ n. When fixing a first one obtains the right-hand side,
while fixing b first, the left-hand side is obtained.

Example 4.33. Let S be a set of n persons such that:

1. each person has exactly k friends in S;
2. any two friends have exactly l common friends in S;
3. any two persons who are not friends, have exactly m common friends.

Prove that m(n− k)− k(k− l) + k−m = 0.

Solution. Consider an arbitrary person P in S. By property 1., P has k friends
(denote this set by A) and n − k − 1 it does not know (we denote this set
by B). We are now counting the pairs (P1, P2) with P1 ∈ A and P2 ∈ B for
which P1 and P2 are friends. As a person P2 ∈ B is not a friend of P, the
persons P2 and P have m common friends (by 3.). Clearly, all these common
friends belong to A, because P has no friends in B, P2 is friends with exactly
m persons in A. Since P2 can be selected in exactly n− k− 1 ways, we have
(n− k− 1)m pairs (P1, P2) with P1 ∈ A, P2 ∈ B in which P1 and P2 are friends.

Similarly, a person P1 ∈ A who is friend with P has l common friends with
P (by 2.), all belonging to A. Since P1 has a total of k friends (including P),
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he has exactly k− l − 1 friends in B. Therefore, the number of pairs (P1, P2)
with P1 ∈ A, P2 ∈ B in which P1 and P2 are friends is exactly k(k− l − 1).

We conclude that m (n− k− 1) = k (k− l − 1) , which ends the proof.

Example 4.34. Prove the following identities:

1)
n

∑
k=0

(
n
k

)
= 2n.

2)
(

n
k

)
=

n
k

(
n− 1
k− 1

)
.

3)
m

∑
k=0

(
n
k

)(
n− k
m− k

)
= 2m

(
n
m

)
.

4)
n

∑
k=0

k
(

n
k

)2
= n

(
2n− 1
n− 1

)
.

5)
n−3

∑
p=k−3

(
p

k− 3

)(
n− p− 1

2

)
=

(
n
k

)
.

6) ∑
k≥0

(
p
k

)(
q
k

)(
k
j

)
=

(
q
j

)(
p + q− j

q

)
.

7) ∑
j≥0

(
n

p + q− j

)(
q
j

)(
p + q− j

q

)
=

(
n
p

)(
n
q

)
.

Solution. 1) The right-hand side is the number of subsets Y of a set X with
n elements (as each of the n elements of X may belong to Y or not). The left-
hand side counts the same sets, but splitting them by cardinal, where we
have: (n

k) sets with exactly k elements, where k = 0, . . . ,n.

2) Notice that this identity is equivalent to

k
(

n
k

)
= n

(
n− 1
k− 1

)
.

On the left we have the number of ways to select a group of k people out
of n, and then designate one with a special role (i.e., the boss). On the right
side we count the same thing, but first selecting the boss (in n ways), then
its other k− 1 companions, out of the n− 1 persons left in the group.

3) First notice that for n < m both sides vanish. Consider a set X with n
elements. Both sides count the number of pairs of subsets (Y, Z) such that
Z ⊆ Y ⊆ X with |Y| = m fixed, in two ways. Notice that the set Z can have
k = 0, . . . ,m elements. On the left, for every k = 0, . . . ,m, the set Z can be
chosen in (n

k) ways, while the other elements in Y \ Z can be selected in
(n−k

m−k) ways. On the other hand, on the right-hand one can first choose the
set Y in (n

m) ways, which has 2m subsets Z of cardinal k = 0, . . . ,m.
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4) For the right-hand side one may use two disjoint sets A and B with
the same cardinal n. Then, the number of ways of choosing an element
x ∈ A and then n− 1 other elements from (A ∪ B) \ {x} is exactly n(2n−1

n−1 ).
Hence, on the right-hand side we counted the number of pairs (x, X) with
the property x ∈ A, X ⊆ (A ∪ B) \ {x} and |X|= n− 1. These pairs are in bi-
jective correspondence with the triples (x,Y, Z), where x ∈Y⊆ A, Z⊆ B and
|Y ∪ Z| = n. To count them we first choose the set Y of cardinal k = 0, . . . ,n,
then x, and finally Z, to obtain k(n

k)(
n

n−k) acceptable configurations. The total
number is then ∑n

k=0 k(n
k)(

n
n−k), which ends the proof.

5) First, the number of subsets X = {x1, . . . , xk} with x1 < x2 · · ·< xk with
k elements taken from a set with n elements is (n

k). Since the values taken by
xk−2 are in the range k− 2, . . . ,n− 2, for each j = k− 2, . . . ,n− 2, the number
of choices for the set {x1, . . . , xk−3} is ( j−1

k−3) while the number of choices for

the set {xk−1, xk} is (n−j
2 ). The identity is obtained by summing over the

values j = k− 2, . . . ,n− 2 and then setting p = j− 1.

6) Consider two disjoint sets A and B of cardinals |A| = p and |B| = q.
On the left-hand side we count the triples (X,Y, Z) such that X ⊆ A, Y ⊆ B,
Z ⊆ B \ Y with |Z| = j and |X ∪ Y| = q. To obtain the identity we sum over
k = 0, . . . , p + q and use ( q

q−k) = (q
k). Notice that these triples are in bijective

correspondence with the pairs (T,U) satisfying U ⊆ B, T ⊆ (A ∪ B) \ U,
|U| = j and |T| = p + q− j, whose number is clearly (q

j)(
p+q−j

q ).

7) Let A be a set with |A|= n. The number of pairs of sets (X,Y)⊆ A× A
such that |X| = p and |Y| = q is (n

p)(
n
q). These pairs are in a bijective corre-

spondence with the triples (T,U,V) with the property T⊆ A, U ⊆ T, V ⊆U,
|U| = q and |V ∪ (T \U) | = p, through the map (X,Y) 7→ (X ∪Y,Y, X ∩Y).
One can now count these triples by summing over all cardinals of |V| = j.

Example 4.35. Compute the following sums:

1◦
n

∑
k=0

(2k− 1)
(

n
k

)
.

2◦
n

∑
k=0

k2
(

n
k

)
.

Solution. 1◦ We have shown that ∑n
k=0 (

n
k) = 2n and now we compute

n

∑
k=0

k
(

n
k

)
.

Notice that this is the number of ways of choosing a subset Y from of a set
X with n persons, having a special element (the “boss”). This is the number
of ordered pairs (y,Y), where y ∈ Y ⊆ X. Clearly, this number is n2n−1, as y
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can be chosen in n ways, and each of the remaining n− 1 elements in X may
belong to Y, or not. The desired number is then 2 · n2n−1 − 2n = (n− 1)2n.

2◦ One may easily notice that

n

∑
k=0

k2
(

n
k

)
=

n

∑
k=0

k(k− 1)
(

n
k

)
+

n

∑
k=0

k
(

n
k

)
.

Reasoning as above, consider a set X with n elements of which y1, y2 have
special role. To compute ∑n

k=0 k(k− 1)(n
k) we may notice that this is the sum

of ordered pairs (y1,y2,Y) such that y1,y2 ∈ Y ⊆ X, y1 6= y2. This number is
n(n− 1)2n−2, hence the desired sum is n(n− 1)2n−2 + n2n−1.

Example 4.36. Let p and q be relatively prime positive integers. Prove that⌊
p
q

⌋
+

⌊
2p
q

⌋
+ · · ·+

⌊
(q− 1)p

q

⌋
=

⌊
q
p

⌋
+

⌊
2q
p

⌋
+ · · ·+

⌊
(p− 1)q

p

⌋
.

Solution. Both sums represent the number of points with integer coordi-
nates within the triangle determined by the lines y = 0, x = q and py = qx.
On the left-hand side, the points are counted horizontally, while on the right-
hand side vertically.

Example 4.37. Let m, n and a1≤ a2≤ · · · ≤ an = m be positive integers. Denoting
by bk the number of elements ai such that ai ≥ k, show that

a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bm.

Solution. Imagine the following diagram: n lines of points, and on the line
i consider put ai points. Counting the points horizontally (first count the
points on each line, then add the results), one gets a1 + · · · + an. Second,
counting the points vertically (first count the points on a column and then
adding the results), one obtains the desired relation.

Example 4.38. Let n be a positive integer. Prove that

σ(1) + σ(2) + · · ·+ σ(n) =
⌊n

1

⌋
+ 2

⌊n
2

⌋
+ · · ·+ n

⌊n
n

⌋
,

where σ(k) represents the sum of divisors of the positive integer k.

Solution. Both sums represent the number of triples (a,b, c) of positive inte-
gers satisfying a ≤ b b | c and c ≤ n. Fixing b first one obtains the right-hand
side, while fixing c first, the left-hand side is obtained.

Example 4.39. Let n be a positive integer. Prove that

12 + 22 + · · ·+ n2 =

(
n + 1

2

)
+ 2
(

n + 1
3

)
=

n (n + 1) (2n + 1)
6

.
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Solution. 12 + 22 + · · ·+ n2 is the number of triples (x,y,z) of positive inte-
gers satisfying x < z, y < z and z < n + 1. We now count these in two dif-
ferent ways. First, the number of such triples for which x < z is (n+1

2 ) (one
can choose 2 integers {1, . . . ,n + 1} and select x = y as the smaller one, and z
the bigger one), and the number of triples for which x 6= z is 2(n+1

3 ) (for each
triple (a,b, c) with the property 1 ≤ a < b < c ≤ n + 1 there are two triples
(x,y,z), given by (a,b, c) and (b, a, c)).

Example 4.40. In a finite sequence of real numbers, the sum of any seven consec-
utive terms is negative and the sum of any eleven terms is positive. What is the
maximum number of terms in the sequence?

Solution. There can be a maximum of 16 numbers in the sequence. Other-
wise, arranging the first 17 numbers in the sequence below:

a1 a2 · · · a7
a2 a3 · · · a8

...
a11 a12 · · · a17

,

by adding the numbers first by rows and then by columns, we get a contra-
diction. A numerical example for 16 is the following:

7, 7, −18, 7, 7, 7, −18, 7, 7, 7, −18, 7, 7, 7, −18, 7.

Example 4.41. Prove the following identities:

1◦
n

∑
k=0

k2
(

n
k

)2
= n (n− 1)

(
2n− 2
n− 2

)
+ n

(
2n− 1
n− 1

)
.

2◦
n

∑
k=0

2k
(

n
k

)
.
(

n− k
b n−k

2 c

)
=

(
2n + 1

n

)
.

Solution. 1◦ Clearly, ∑n
k=0 k2(n

k)
2 = ∑n

k=0 k(k− 1)(n
k)

2 + ∑n
k=0 k(n

k)
2, while

n

∑
k=0

k(k− 1)
(

n
k

)2
=

n

∑
k=0

k(k− 1)
(

n
k

)(
n

n− k

)
.

If A and B are two teams of n players each, then the sum above represents
the number of ways in which one can choose n members out of these teams,
in such a way that both the leader and deputy are from Team A. For every
k = 0, . . . ,n, there are (n

k) ways to choose k players from Team A, k(k − 1)
ways to designate the leadership, and ( n

n−k) to choose the other n− k players
from Team B. If the count is made overall, then there are n(n− 1) ways to
first choose the leaders from Team A, while the other n− 2 members can be
selected in (2n−2

n−2 ) ways. This confirms the relation
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n

∑
k=0

k(k− 1)
(

n
k

)2
=

n

∑
k=0

k(k− 1)
(

n
k

)(
n

n− k

)
= n(n− 1)

(
2n− 2
n− 2

)
.

Similarly, if a single captain has to be selected from Team A, then one obtains

n

∑
k=0

k
(

n
k

)2
=

n

∑
k=0

k
(

n
k

)(
n

n− k

)
= n

(
2n− 1
n− 1

)
.

2◦ The right-hand side is the number of ways in which n players can be
selected from a team with 2n + 1 players.

We now relate this to the left-hand side. First, divide the players into n
groups of 2, with 1 player unpaired. For a given k = 0, . . . ,n, there are (n

k)

ways to choose k pairs from where exactly one player is selected, with 2k

such configurations possible, and ( n−k
b n−k

2 c
) ways to select b n−k

2 c pairs from
the n − k pairs from which both players are taken. The unpaired element
will not be chosen if n− k is even (as all other elements come in pairs), or it
will be chosen if n− k is odd. This ends the proof.

Example 4.42. Let k and n be positive integers, and consider a set X of n points in
the plane with the properties:

1) no three points in X are collinear
2) for every given point M ∈ X, there are at least k other points in X located at the

same distance from M.

Prove that k < 1
2 +
√

2n− 1.

Solution. If A, B ∈ X, then by 1) there can be at most two points C ∈ X such
that [AC] = [BC] (as these are located on the bisector of the segment [AB],
and no more than two points in X are collinear). Hence, the number K of
triplets (A, B,C) such that [AC] = [BC] satisfies K ≤ 2(n

2). By 2) one also has
K ≥ n(k

2), as for each of the n points in X there are at least (k
2) sets {A, B}

located at the same distance. Combining these two inequalities one obtains

k2 − k ≤ 2(n− 1),

from where (
k− 1

2

)2
= k2 − k +

1
4
< k2 − k + 1≤ 2n− 1.

Taking square roots the desired inequality follows.
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4.12 Hall’s theorem (the marriage theorem)

In this section we present a theoretical result which provides necessary and
sufficient conditions for the solubility of the real-life problem below.

Suppose that in a town there are n families m ≥ n houses. Each family
has preferences over the houses, liking some and disliking others. Establish
necessary and sufficient conditions, based on the families’ preferences, that
would allow for the allocation of a house to each family such that every
family receives a house that is to their liking.

Clearly, a necessary condition for the assignment is that every family likes
at least one house. However, this condition is not sufficient. Mere fulfillment
of this condition does not exclude the possibility that two families like exclu-
sively the same single house. This observation allows us to derive another
necessary condition: given any pair of distinct families, the set of houses
liked by at least one of them must have at least two elements. Similarly, we
deduce that for any set of three families, the set of houses liked by at least
one of them must have at least three elements.

Let us denote by F and H the set of families and the set of houses, respec-
tively. We know that |F| = n and |H| = m, where m ≥ n. For every subset
X ⊆ F, we denote by H(X) ⊆ H the subset of houses liked by at least one
family in X. Generalising the previous idea, it is easy to deduce that in order
to have a successful allocation of houses, the following necessary condition
must hold: for every subset X ⊆ F, the cardinality of the set H(X) ⊆ H we
must have |H(X)| ≥ |X|.

The following celebrated theorem of the british mathematician Philip
Hall asserts that the condition above is sufficient for the solubility of the
problem described above.

Theorem 4.18 (Hall, 1935). Let F and H be as above. If for every set X ⊆ F, we
have |H(X)| ≥ |X|, then there exists an allocation of houses such that each family
receives a house that they like.

Hall’s theorem has become commonly known as the Marriage theorem,
because instead of the families and houses analogy, the theorem is often
motivated by asking if it possible to pair two disjoint sets of persons in mar-
riages in a way that all persons from one set are satisfied with their assigned
partner?

This problem can be represented using a bipartite graph, where the set
of vertices is the disjoint union F ∪ H. Each edge in the graph represents a
possible pairing between a family f ∈ F and a house h ∈ H. The goal is to
find a matching, which is a set of edges that do not share any vertices. In an
effort of keeping the book self-contained, we do not use the theory of graphs
in our presentation. We recommend the books by Bumbăcea [71] and [224]
for detailed accounts of this theorem using graph theory.
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Proof. As we remarked above, the condition in the hypothesis is necessary.
We prove the sufficiency by strong induction on |F| = n. For n = 1, the con-
clusion follows trivially. Assume that the condition is sufficient for |F| ≤ n
and we will prove that it is also sufficient for n + 1. There are two possible
cases: either for every subset X⊆ F we have |H(X)| ≥ |X|+ 1 or, there exists
a subset X with 1≤ |X| = k ≤ n such that |H(X)| = |X| = k.

In the first case, we choose any family f ∈ F and we pair it with a house
h ∈ H({ f }) ⊆ H. Now, the remaining sets F \ { f } and H \ {h} satisfy the
condition of the theorem. We can therefore finish by applying the induction
hypothesis.

In the second case, applying the induction hypothesis to X and H(X), we
can match the k families with the k houses they like. We are left to prove that
we can match the remaining families F \ X with the remaining set of houses
H \ H(X). For any set Y ⊆ F \ X, from the necessary condition and the fact
that Y and X are disjoint, we deduce that |H(Y ∪ X)| ≥ |Y|+ |X| = |Y|+ k.
But since the k families in X like exactly k houses, it follows that |H(Y)| ≥
|Y|, i.e. the houses in Y like at least |Y| houses. Since Y was chosen arbitrary
from F \ X and |F \ X| < |X| = n + 1, we can apply induction hypothesis to
F \ X to deduce that the remaining families can be paired to the remaining
n + 1− k houses, completing the induction. �

Hall’s theorem is a powerful tool and has been applied in many different
fields to solve diverse problems. In short, it provides a minimal set of con-
ditions in order to assure a set of preferences can be satisfied in a particular
allocation problem. The versatility of Hall’s theorem lies in its ability to pro-
vide a framework for solving problems that, at first glance, seem unrelated.
We illustrate below a list of example problems.

Example 4.43. An n× n table is filled with 0’s and 1’s so that if we chose randomly
n cells (no two of them in the same row or column) then at least one of these cells
contains 1. Prove that we can find i rows and j columns so that i + j ≥ n + 1 and
their intersection contains only 1’s.

Solution. Let us consider a set of families F = { f1, f2, . . . , fn} and a set of
houses H = {h1, h2, . . . , hn} such that the family fi likes the house hj if and
only if the entry on the position (i, j) in our table is 0.

If for every subset X ⊆ F, we have |H(X)| ≥ |X|, then by Hall’s theorem
there is an allocation of houses such that each family receives a house they
like. In our context, this means that there exists n cells from different rows
and columns such that all of them contain 0, a contradiction to the hypothe-
sis. Therefore, the condition in Hall’s theorem must not be satisfied.

In other words, there exists a non-empty subset X ⊆ F with the property
|H(X)|< |X|. Let k = |X| and l = |H(X)|. Without losing generality, we may
change the ordering of families and houses such that X = { f1, f2, . . . , fk} and
also H(X) = {h1, h2, . . . , hl}. Looking back to our problem, this means that in
the table, the re-labeled lines 1,2, . . . k and columns l + 1, . . . ,n have only 1’s
in their intersection.
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We have therefore found at least k rows and n− l columns such that

k + n− l ≥ k + n− k + 1 = n + 1

such that their intersection contains only 1’s, which is what we had to prove.
We will now provide an example that can be approached in a manner

akin to the one described above.

Example 4.44. The entries of a n × n table are non-negative reals such that the
numbers in each row and column add up to s > 0. Prove that one can pick n numbers
from distinct rows and columns which are positive.

Solution. We first note that by scaling the entries in table, one can assume
that s = 1. Let us consider a set of families F = { f1, f2, . . . , fn} and a set of
houses H = {h1, h2, . . . , hn} such that the family fi likes the house hj if and
only if the entry on the position (i, j) in our table is different from 0.

If the hypothesis of Hall’s theorem holds for F and H, then since there
exists a successfully allocation of houses to the n families, each family fi will
correspond to a positive entry (i, j), for different j’s, yielding the conclusion.

Let us now prove that the hypothesis of Hall’s theorem holds indeed.
First let X ⊆ F be any non-empty subset. Remark that the sum of all the
numbers on the lines corresponding to families in X is |X|. If H(X)≤ |X| − 1,
there are positive numbers on at most |X| − 1 of the intersection of columns
with the lines corresponding to families in X, the sum of the numbers on
one of these columns would be at least |X|

|X|−1 > 1, a contradiction with the
hypothesis of our problem.

Therefore, for any subset X, we have |H(X)| ≥ |X|, completing the proof.

Example 4.45. Some pieces are placed on an 8× 8 chessboard. There are exactly 4
pieces in each row and each column of the board. Show that there are 8 pieces among
those pieces that no two of them are in the same row or column.

Solution. Similarly to the first two problems, let us consider a set of families
F = { f1, f2, . . . , f8} and a set of houses H = {h1, h2, . . . , h8} such that the fam-
ily fi likes the house hj if and only if there is a piece in the cell (i, j) of the
chessboard. We will show that the hypothesis of Hall’s theorem is satisfied.

Indeed, for any subset X ⊆ F with k ≥ 2 elements, we note that these like
together 4k houses (not necessarily distinct). In other words, |H(X)| ≤ 4k. If
among these 4k houses, at most k− 1 are distinct, then there exists a house
which is liked by at least 4k

k−1 > 4 families.
Translated to the setting of our problem, this means that on the column

corresponding to this house, there are more than 4 pieces, contradicting the
hypothesis. Therefore, for any X ⊆ F, we have |H(X)| ≥ |X|. The conclusion
now follows easily.
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Example 4.46. Let X be a finite set and let

X =
n⋃

i=1

Xi =
n⋃

i=1

Yi

be two disjoint decompositions with all sets Xi and Yi having the same size. Prove
that there are distinct elements x1, x2, . . . , xn ∈ X which are in different sets in both
decompositions.

Solution. Consider the families F = {X1, X2, . . . , Xn} and the houses H =
{Y1,Y2, . . . ,Yn}. We say that the family Xi likes the house Yj if and only if
Xi ∩ Yj 6= ∅. Note that the conclusion follows if we prove that there is a
successful allocation of houses to families.

Now, let k = |Xi| = |Yj| for all 1 ≤ i, j ≤ n. As Xi’s are disjoint, the union
of any t sets Xi has exactly kt elements. By the same argument, the union
of any t − 1 sets Yj has exactly (t − 1)k elements. As Y′j s cover the whole
set X, the tk elements belong to at least t sets Yj. Looking at Hall’s theorem,
we just proved that for any A ⊂ F, we have |H(A)| ≥ |A|. The proof is now
complete.

Example 4.47. Let P ⊂N be a set consisting of 2005 distinct prime numbers. Let
A be the set of all possible products of 1002 elements from P and let B be the set of all
products of 1003 elements from P. Prove that there is a one-to-one correspondence
f : A→ B such that for every a ∈ A, we have that a divides f (a).

Solution. Consider a set F = { f1, f2, . . . , fn} of n = (2005
1002) families and a set

H = {h1, h2, . . . , hn} of n = (2005
1003) houses, each of them associated to one of

the products with 1002 and 1003 factors, respectively. We say that a family
likes a house if the family’s number divides the number of the house.

Now, construct a n× n table in which on the position (i, j) we have 1
2003 if

the family fi likes the house hj and 0 otherwise, it is easy to see that on each
line and on each column we have non-negative numbers that sum up to 1.
From Example 4.44, we deduce that one can pick n numbers from distinct
rows and distinct columns which are all positive. That means, there is a suc-
cessfully allocation of houses to families. This allocation gives the desired
one-to-one correspondence f .

Example 4.48. An m× n array is filled with the numbers 1,2, . . . ,n each used ex-
actly m times. Show that one can always permute the numbers within columns to
arrange that each row contains every number 1,2, . . . ,n exactly once.

Solution. We claim that one can permute the numbers within columns to
arrange that on the first row we have {1,2, . . . ,n} orded in some way.

Consider an n× n table such that in each entry (i, j) we record the number
of times i appears on the column j in the original m× n array. Note that in
this n× n table, the sum of the numbers on each line is m, since each number
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appears m times in the initial array. The sum of the numbers on each column
is also m, because each column in the initial array contains m entries.

Now, from Example 4.44 we deduce that we can pick n numbers from
distinct rows and distinct columns which are all positive. This means that
there are n distinct entries in the original m × n array, lying on different
rows and different columns. By permuting elements on each column, these
entries can be brought to the first row.

Using the claim, the conclusion follows by an easy induction argument
on the number of rows m.

Example 4.49. A group of students went on a trip to the beach. There were provided
n busses of equal capacity for both the trip to the beach and the ride home, one
student in each seat. There were not enough seats in n− 1 buses to fit each student.
Every student who left in a bus came back in a bus, but not necessarily the same
one. Prove that there are n students such that any two were on different buses on
both rides.

Solution. Let Xi be the set of students in the i-th bus on the trip to the beach
and Yj be the set of the students in the j-th bus on the ride home (1 ≤ i, j ≤
n). Denote by m the number of students that can be seated in a bus. The
hypothesis tells us that there are at least (n − 1)m + 1 students in total, as
they cannot be seated in n− 1 busses. We note a striking resemblance to the
solution of Example 4.46.

Let F = {X1, . . . , Xn} be the set of families and H = {Y1, . . . ,Yn} be the
set of houses. We say that the family Xi likes the house Yj if and only if
Xi ∩ Yj 6= ∅. The problem reduces to showing that there exists a successful
allocation of houses to families. Any group of k families contain at least km−
(m− 1) = k(m− 1) students (otherwise a bus can be discarded). Therefore,
these students belong to at least k different busses on the ride home. This
means that k families like at least k different houses altogether. Now the
conclusion follows from Hall’s theorem.





Chapter 5
Generating Functions

Generating functions play an important role in the study of sequences of
numbers, functions and polynomials (see, e.g., [152, 170, 180, 216, 232]). In
this chapter we present key properties, operations and examples involving
ordinary generating functions (Section 5.1), or exponential generating func-
tions (Section 5.2). There we give the ordinary and exponential generating
functions for some classical polynomials and integer sequences. Section 5.3
contains applications of the Cauchy integral formula in the derivation of
integral representations for classical number sequences.

5.1 Ordinary generating functions and examples

The generating function of an infinite sequence

a0, a1, . . . , an, . . . ,

is the infinite series

F(z) = a0 + a1z + a2z2 + · · ·+ anzn + · · · . (5.1)

The identification principle. Let F(z) = ∑∞
n=0 anzn and G(z) = ∑∞

n=0 bnzn be
two generating functions. Then, F(z) = G(z) if and only if an = bn, n ≥ 0.

The following operations hold.

1. Addition.

∞

∑
n=0

anzn +
∞

∑
n=0

anzn =
∞

∑
n=0

cnzn, where cn = an + bn.

2. Multiplication by a constant. If α ∈ C a scalar, then

α
∞

∑
n=0

anzn =
∞

∑
n=0

cnzn, where cn = αan.

123
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3. Formal differentiation.

d
dz

(F(z)) =
d

dz

(
∞

∑
n=0

anzn

)
=

∞

∑
n=0

nanzn−1.

4. Formal integration.∫
F(z)dz =

∫ ∞

∑
n=0

anzndz =
∞

∑
n=0

an

n + 1
zn+1.

5. Multiplication.

F(z)G(z) =

(
∞

∑
n=0

anzn

)(
∞

∑
n=0

bnzn

)
=

∞

∑
n=0

cnzn,

where cn = ∑n
k=0 akbn−k.

6. Hadamard multiplication.

F(z) ◦ G(z) =

(
∞

∑
n=0

anzn

)(
∞

∑
n=0

bnzn

)
=

∞

∑
n=0

cnzn,

where cn = anbn.

7. Composition. If a0 = 0, we have

G (F(z)) =
∞

∑
n=0

bn [F(z)]
n =

∞

∑
n=0

bn

 ∑
j1+···+jk=n

j1,...,jk≥1

aj1 · · · ajk

 zn,

8. Division. If b0 6= 0, then we have

F(z)
G(z)

=
∑∞

n=0 anzn

∑∞
n=0 bnzn =

∞

∑
n=0

cnzn,

cn =
1
b0

(
an −

n

∑
k=1

bkcn−k

)
.

9. Inverse. The power series F(z) and G(z) are inverse if F(z)G(z) = 1,
which implies a0b0 = 1 and

bn = − 1
a0

n

∑
k=1

akbn−k, for n ≥ 1.

We now present some illustrative examples of generating functions.
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Example 5.1 (Finite sequences). For example, a finite sequence

a0, a1, . . . , an,

can be seen as the infinite sequence

a0, a1, . . . , an,0,0, . . . ,

whose generating function is the polynomial

F(z) = a0 + a1z + a2z2 + · · ·+ anzn. (5.2)

Example 5.2 (Constant sequence). The generating function of the sequence

1, 1, . . . ,1, . . .

is the function

F(z) = 1 + z + z2 + · · ·+ zn + · · · = 1
1− z

, |z| < 1.

Example 5.3 (Binomial coefficients). For an integer n≥ 1, the generating func-
tion for the binomial coefficients(

n
0

)
,
(

n
1

)
,
(

n
2

)
, . . . ,

(
n

n− 1

)
,
(

n
n

)
,0, . . . ,

is the function

n

∑
k=0

(
n
k

)
zk = (1 + z)n .

Example 5.4 (Generalized binomial coefficients). Recall that for a real num-
ber α and an integer n ≥ 0, the generalized binomial coefficient is defined by(

α

n

)
=

α(α− 1) · · · (α− n + 1)
n!

.

The generating function for the generalized binomial coefficients(
α

0

)
,
(

α

1

)
,
(

α

2

)
, . . . ,

(
α

n

)
, . . . ,

is given by

∞

∑
n=0

(
α

n

)
zn = (1 + z)α .
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Example 5.5. Let k be a positive integer and let a1, a2, . . . , an, . . . , be the infinite
sequence whose general term an is the number of non-negative integer solutions of
the linear Diophantine equation x0 + x1 + · · ·+ xn = n.

Solution. The generating function of the sequence (xn)n≥0 is

F(z) =
∞

∑
n=0

(
∑

j1+···+jk=n
1

)
zn =

∞

∑
n=0

∑
j1+···+jk=n

zj1+···+jk

=

(
∞

∑
j1=0

zj1

)(
∞

∑
j2=0

zj2

)
· · ·
(

∞

∑
jk=0

zjk

)
=

1
(1− z)k

=
∞

∑
n=0

(−1)n
(
−k
n

)
zn =

∞

∑
n=0

(
n + k− 1

n

)
zn.

Example 5.6. Let an be the number of integer solutions of the equation

x1 + x2 + x3 = n,

where 0≤ a1 ≤ 4, 2≤ a2 ≤ 3 and a3 ≥ 3. Find the generating function.

Solution. The generating function of this sequence is

F(z) =
(

1 + z + z2 + z3 + z4
)(

z2 + z3
)(

z3 + z4 + · · ·
)

=
z5 (1 + z + z2 + z3 + z4) (1 + z)

1− z
.

Example 5.7. Find the generating function for the number of n-combinations of
red, green, blue and yellow balls, with the properties: the number of red balls is
0,1,2 or 3, the number of green balls is at least 5, the number of blue balls is odd,
while the number of yellow balls is even.

Solution. The generating function of this sequence is

F(z) =

(
3

∑
k=0

zk

)(
∞

∑
k=5

zk

)(
∞

∑
k=0

z2k+1

)(
∞

∑
k=0

z2k

)

=
z6 (1− z4)(1− z2)2

(1− z)2 .

Example 5.8. Let k be a positive integer and let a0, a1, . . . , an, . . . , be the infinite
sequence whose general term an is the number of non-negative integer solutions of
the linear Diophantine equation

x1 + x2 + · · ·+ xk = n.

Solution. The generating function of the sequence (xn)n≥0 is
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F(z) =
∞

∑
n=0

(
∑

j1+···+jk=n
1

)
zn =

∞

∑
n=0

∑
j1+···+jk=n

zj1+···+jk

=

(
∞

∑
j1=0

zj1

)(
∞

∑
j2=0

zj2

)
· · ·
(

∞

∑
jk=0

zjk

)
=

1
(1− z)k

=
∞

∑
n=0

(−1)n
(
−k
n

)
zn =

∞

∑
n=0

(
n + k− 1

n

)
zn.

Example 5.9. Let k be a positive integer and let xk,n be the number of integer solu-
tions (j1, . . . , jk) of the equation

a1 + a2 + · · ·+ ak = n,

such that the numbers j1, . . . , jk are odd positive integers.

The generating function of the sequence (xn,k)n≥0 is

F(z) =

(
∞

∑
j=0

z2j+1

)
· · ·
(

∞

∑
j=0

z2j+1

)
=

zk

(1− z2)k

= zk
∞

∑
n=0

(
n + k− 1

n

)
z2n =

∞

∑
n=0

(
n + k− 1

n

)
z2n+k.

Example 5.10. Find the terms an, n ≥ 1 representing the number of nonnegative
integer solutions of the equation

3x1 + 4x2 + x3 + 5x4 = n.

Solution. The generating function of the sequence (an)n≥0 is

F(z) =

(
∞

∑
k=0

z3k

)(
∞

∑
k=0

z4k

)(
∞

∑
k=0

zk

)(
∞

∑
k=0

z5k

)

=
1

(1− z3) (1− z4) (1− z) (1− z5)
.

More generally, if for an integer k ≥ 1 and given integers a1, . . . , ak, then
the number of integer solutions (x1, . . . , xk) of the equation

a1x1 + a2x2 + · · ·+ akxk = n,

is given by the formula

F(z) =
1

(1− za1) (1− za2) · · · (1− zak )
.

Note that we also have the following useful identities:
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1
(1− z)n =

∞

∑
k=0

(
−n
k

)
(−z)k =

∞

∑
k=0

(
n + k− 1

k

)
zk, |z| < 1;

1
(1− az)n =

∞

∑
k=0

(
−n
k

)
(−az)k =

∞

∑
k=0

(
n + k− 1

k

)
akzk, |z| < 1

|a| .

These formulae help to find the generating functions for many sequences.

Example 5.11. Show that the generating function of the sequence

0, 1, 22, . . . , n2, . . . ,

is given by the formula

F(z) =
z(1 + z)
(1− z)3 .

Solution. Indeed, we have
1

1− z
=

∞

∑
k=0

zk, hence

1
(1− z)2 =

d
dz

(
1

1− z

) ∞

∑
k=0

d
dz

(
zk
)

=
∞

∑
k=0

kzk−1.

Multiplying both sides by z we obtain
z

(1− z)2 =
∞

∑
k=0

kzk, which by differen-

tiation with respect to z gives

1 + z
(1− z)3 =

∞

∑
k=0

k2zk−1.

The desired result is obtained by multiplication with z.

Similarly one can obtain the generating functions for the sequence

0, 1, 2k, . . . , nk, . . . ,

where k ≥ 2 is a fixed integer.

The sequence (Cn)n≥0 given by

Cn =
1

n + 1

(
2n
n

)
,

is known as the Catalan sequence, which has numerous interpretations and
practical applications.
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Example 5.12 (Catalan sequence). Consider the Catalan sequence given by

Cn+1 =
n

∑
k=0

CkCn−k, C0 = 1.

Prove that Cn =
1

n + 1

(
2n
n

)
.

Solution. Using the generating function F(z) = ∑∞
n=0 Cnzn, we have

F(z)F(z) =

(
∞

∑
n=0

Cnzn

)(
∞

∑
n=0

Cnzn

)
=

∞

∑
n=0

(
∞

∑
k=0

CkCn−k

)
zn

=
∞

∑
n=0

Cn+1zn =
1
z

∞

∑
n=1

Cnzn =
F(z)

z
− 1

z
,

hence the following identity holds zF(z)2 − F(z) + 1 = 0.
Solving for F(z) we obtain

F(z) =
1±
√

1− 4z
2z

.

Since we have

√
1− 4z = 1 +

∞

∑
n=1

(−1)n
( 1

2
n

)
4nzn = 1 +

∞

∑
n=1

anzn,

with

an = (−1)n
[

1
2

(
1
2
− 1
)
· · ·
(

1
2
− n + 1

)]
· 2n

n!
· 2n

= (−1)n (−1)(−3) · · · (−2(n− 1) + 1)
n!

· 2n

= −1 · 3 · 5 · · · (2(n− 1)− 1)
n!

· 2n = −2
(2(n− 1))!
n!(n− 1)!

.

It follows that

√
1− 4z = 1− 2

∞

∑
n=0

(2n)!
n!(n + 1)!

zn+1,

hence

F(z) =
1−
√

1− 4z
2z

=
∞

∑
n=0

(2n)!
n!(n− 1)!

zn =
∞

∑
n=0

1
n + 1

(
2n
n

)
zn.
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Remark. One can prove by induction that Cn is the number of ways to add
brackets to evaluate the matrix product

A1 A2 · · ·An+1, n ≥ 0.

The number of ways to evaluate the product A1 A2 · · ·An+2 is determined
by multiplying two matrices at the end, which is given exactly by n + 1, i.e.,

A1 A2 · · ·An+2 = (A1 · · ·Ak+1) (Ak+1 · · ·An+1) , 0≤ k ≤ n.

This suggests that the following recurrence relation holds:

Cn+1 =
n

∑
k=0

CkCn−k,

which produces Catalan’s sequence.

5.2 Exponential generating functions and examples

The method of ordinary generating functions helped finding sequence terms,
especially when these were linked to binomial coefficients. However, in
other applications, generating functions with different properties must be
considered. Such examples are the exponential generating functions.

For the sequence (an)n≥0, the exponential generating function is the series

E(z) =
∞

∑
n=0

an

n!
zn. (5.3)

The identification principle. Let F(z) =
∞

∑
n=0

1
n!

anzn and G(z) =
∞

∑
n=0

1
n!

bnzn

be two generating functions. Then, F(z) = G(z) if and only if an = bn, n≥ 0.

The following operations hold.

1. Addition.

∞

∑
n=0

1
n!

anzn +
∞

∑
n=0

1
n!

anzn =
∞

∑
n=0

1
n!

cnzn, where cn = an + bn.

2. Multiplication by a constant. If α ∈ C a scalar, then

α
∞

∑
n=0

1
n!

anzn =
∞

∑
n=0

1
n!

cnzn, where cn = αan.
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3. Formal differentiation.

d
dz

(F(z)) =
d

dz

(
∞

∑
n=0

1
n!

anzn

)
=

∞

∑
n=0

1
n!

nanzn−1 =
∞

∑
n=0

1
n!

an+1zn.

4. Formal integration.∫
F(z)dz =

∫ ∞

∑
n=0

1
n!

anzndz =
∞

∑
n=0

1
n!

an

n + 1
zn+1 =

∞

∑
n=1

1
n!

an−1zn.

4. Multiplication.

F(z)G(z) =

(
∞

∑
n=0

1
n!

anzn

)(
∞

∑
n=0

1
n!

bnzn

)
=

∞

∑
n=0

1
n!

cnzn,

cn =
n

∑
k=0

(
n
k

)
akbn−k.

5. Hadamard multiplication.

F(z) ◦ G(z) =

(
∞

∑
n=0

1
n!

anzn

)(
∞

∑
n=0

1
n!

bnzn

)
=

∞

∑
n=0

1
n!

cnzn,

where cn =
1
n!

anbn.

6. Composition. If a0 = 0, we have

G (F(z)) =
∞

∑
n=0

1
n!

bn [F(z)]
n =

∞

∑
n=0

1
n!

bn

 ∑
j1+···+jk=n

j1,...,jk≥1

aj1
j1!
· · ·

ajk
jk!

 zn

=
∞

∑
n=0

1
n!

bn

 ∑
j1+···+jk=n

j1,...,jk≥1

1
n!

(
n

j1, . . . , jk

)
aj1 · · · ajk

 zn.

7. Division. If b0 6= 0, then we have

F(z)
G(z)

=
∑∞

n=0
1
n! anzn

∑∞
n=0

1
n! bnzn

=
∞

∑
n=0

1
n!

cnzn, cn =
1
b0

(
an −

n

∑
k=1

(
n
k

)
bkcn−k

)
.

8. Inverse. The power series F(z) and G(z) are inverse if a0b0 = 1 and

bn = − 1
a0

n

∑
k=1

(
n
k

)
akbn−k, for n ≥ 1.
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The following exponential generating functions are immediate

• an = 1, n ≥ 0 (constant sequence)

E(z) =
∞

∑
k=0

zk

k!
= ez.

• an = an, n ≥ 0 and a ∈ C a complex number (geometric sequence)

E(z) =
∞

∑
k=0

akzk

k!
=

∞

∑
k=0

(az)k

k!
= eaz.

• If 0 ≤ k ≤ n be positive integers and P(n,k) = n!
(n−k)! is the number of ar-

rangements of k objects out of n, then the exponential generating function
of the sequence P(n,0), P(n,1), P(n,2), . . . , P(n,n), 0, . . . , is given by

E(z) =
n

∑
k=0

P(n,k)
k!

zk =
n

∑
k=0

(
n
k

)
zk = (1 + z)k.

Theorem 5.1 (n-permutations of multisets). Let M = {n1α1,n2α2, . . . ,nkαk}
be a multiset over the set S = {α1,α2, . . . ,αk}, where nj is multiplicity of the element
αj, j = 1, . . . ,k. Denoting by an the number of n-permutations of the multiset M,
the exponential generating function of the sequence (an)n≥0 is

E(z) =

(
n1

∑
j=0

zj

j!

)(
n2

∑
j=0

zj

j!

)
· · ·
(

nk

∑
j=0

zj

j!

)
. (5.4)

Proof. Notice that for n ≥ n1 + · · · + nk, we have an = 0, hence E(z) is a
polynomial. Notice also that the right side of (5.4) can be expanded as

n1,n2,...,nk

∑
j1,j2,...,jk=0

zj1+j2···+jk

j1!j2! · · · jk!
=

n1+n2+···+nk

∑
n=0

zn

n! ∑
j1+···+jk

0≤j1≤n1,...,0≤jk≤nk

n!
j1!j2! · · · jk!

The number of permutations of M with exactly j1α′1s, j2α′2s, . . . , jkα′ks such
that j1 + j2 + · · ·+ jk = n is the multinomial coefficient(

n
j1, j2, . . . , jk

)
=

n!
j1!j2! · · · jk!

.

This shows that an is indeed given by an = ∑
j1+···+jk

0≤j1≤n1,...,0≤jk≤nk

n!
j1!j2! · · · jk!

. �
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Example 5.13. Determine the number of ways to colour the squares of a 1-by-
n chessboard using black, white, green and red, if an even number of squares if
coloured in black.

Solution. Denoting the numbers of colourings by an, we have a1 = 0. Each
such colouring can be seen as a permutation of three objects b (black), w
(white), g (green) and r (red), with repetitions allowed, where b appears an
even number of times. This is given by the exponential generating function
expressed by the formula

E(z) =

(
∞

∑
n=0

z2n

(2n)!

)(
∞

∑
n=0

zn

n!

)3

=
ez + e−z

2
e3z =

1
2

(
e4z + e2z

)
=

1
2

(
∞

∑
n=0

4nzn

n!
+

∞

∑
n=0

2nzn

n!

)
=

1
2

∞

∑
n=0

(4n + 2n) · zn

n!
.

This shows that an = 2n−1(2n + 1), n ≥ 1.

Example 5.14. Determine the number an of n digit (in base 10) numbers with each
digit even, where the digits 0, 2 and 4 occur an even number of times.

Solution. Denoting this number by an and setting a1 = 0, this is the num-
ber of n-permutations of the multiset M = {∞0,∞2,∞4,∞6,∞8} (having in-
finitely many copies of each element), in which 0, 2 and 4 occur an even
number of times. The exponential generating function is

E(z) =

(
∞

∑
n=0

z2n

(2n)!

)3( ∞

∑
n=0

zn

n!

)2

=

(
ez + e−z

2

)3

e2z

=
1
8

(
e−z + 3ez + 3e3z + e5z

)
=

1
8

(
∞

∑
n=0

(−1)nzn

n!
+ 3

∞

∑
n=0

zn

n!
+ 3

∞

∑
n=0

3nzn

n!
+

∞

∑
n=0

5nzn

n!

)

=
1
8

∞

∑
n=0

(5n + 3n + 1 + (−1)n) · zn

n!
.

This shows that

an =
5n + 3n + 1 + (−1)n

8
, n ≥ 0.

Example 5.15. Find the number of ways to colour the squares of a 1-by-n board
with red, blue, green and white, where the number of red squares is odd, the number
of blue squares is even, and at least one square is white.
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Solution. The exponential generating function is

E(z) =

(
∞

∑
n=0

z2n+1

(2n + 1)!

)(
∞

∑
n=0

z2n

(2n)!

)(
∞

∑
n=0

zn

n!

)(
∞

∑
n=1

zn

n!

)

=

(
ez − e−z

2

)(
ez + e−z

2

)
ez(ez − 1)

=
1
4

(
e4z − e3z − 1 + e−z

)
= −1

4
+

1
4

∞

∑
n=0

(4n − 3n + (−1)n) · zn

n!
.

This shows that

an =
4n − 3n + (−1)n

4
, n ≥ 1,

and a0 = 0.

5.3 A useful version of the Cauchy integral formula

The Cauchy integral formula is a fundamental result in complex analysis,
with a long history and applications in areas like complex analysis, combi-
natorics, discrete mathematics, or number theory.

Here we will use a version of Cauchy’s formula derived in [16], to derive
integral representations for the terms of some classical integer sequences.
Recently, this approach was used to compute exact integral formulae for the
coefficients of cyclotomic [20], Gaussian and multinomial [17], polygonal
[18], and other general classes of polynomials [19].

Recall that a function h : Ω→C is said to be meromorphic at a point z0 ∈Ω,
if h can be written as a quotient of two analytic functions f , g in a neighbour-
hood U ⊂Ω of z0

∀z ∈ U \ {z0} : h(z) =
f (z)
g(z)

.

In this case we also have the expansion

h(z) = ∑
n≥−m

cn(z− z0)
n, (5.5)

for all z 6= z0 in a disk centered at z0. If m is the largest number for which
c−m 6= 0 in (5.5), then z0 is called a pole of order m. The coefficient c−1 of (z−
z0)
−1 in (5.5) is denoted by Res(h,z0), and called the residue of h at the point

z0. Cauchy’s Residue theorem relates global properties of a meromorphic
function and its integral along closed curves, to local characteristics, i.e., the
residues at poles.
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Theorem 5.2 (Residue theorem). Let h : Ω→ C be a meromorphic function in a
domain Ω, and λ be a simple loop in Ω along which the function is analytic. Then

1
2πi

∫
λ

h(z)dz = ∑
s

Res(h(z),z = s),

where the sum is over all poles s of h enclosed by λ.

Through this formula one can obtain a unitary formula for the coefficients
of an analytic function [112].

Theorem 5.3 (Cauchy integral formula). Let f (z) = ∑n≥0 cnzn be an analytic
function in a disk centered at 0, and let Γ be a curve in the interior of this disk, which
winds around the origin exactly once in positive orientation, that is the winding
number with respect to 0 is equal to 1. Then we have

cn =
1

2πi

∫
Γ

f (z)
zn+1 dz, n = 0,1, . . . . (5.6)

Letting Γ be the circle of radius R > 0 centred at 0 and z = R (cos t + i sin t),
with t ∈ [0,2π], we have dz = R(−sin t + i cos t)dt = iR(cos t + i sin t)dt.
Then, formula (5.6) can be written as

cn =
1

2πi

∫ 2π

0

iR(cos t + i sin t) f (R(cos t + i sin t))
Rn+1(cos t + i sin t)n+1 dt

=
1

2πRn

∫ 2π

0

f (R(cos t + i sin t))
cosnt + i sinnt

dt,

therefore

cn =
1

2πRn

∫ 2π

0
(cosnt− i sinnt) f (R(cos t + i sin t)) dt, n = 0,1, . . . . (5.7)

If the coefficients cn are real numbers, then from (5.7), for n = 0,1, . . . we
obtain

cn =
1

2πRn

∫ 2π

0
Re [(cosnt− i sinnt) f (R(cos t + i sin t))] dt. (5.8)

In addition, in this case the following formula can be deduced∫ 2π

0
Im [(cosnt− i sinnt) f (R(cos t + i sin t))] dt = 0, n = 0,1, . . . .

Remark. When f is a polynomial, we can give a direct proof to formula (5.7).
Indeed, assuming that f (z) = ∑m

k=0 ckzk, we obtain

z−n f (z) = cn +
m

∑
k=0,k 6=n

ckzk−n.



136 5 Generating Functions

Let z = R(cos t+ i sin t), t∈ [0,2π], and consider the integral over the interval
[0,2π]. Clearly, the integral of zk−n vanishes for k 6= n, hence∫ 2π

0
R(cos t + i sin t)−n f (R(cos t + i sin t)) dt = 2πcn, n = 0,1, . . . , (5.9)

so (5.7) follows. The above argument also works for Laurent polynomials.

Example 5.16. Let with 0 < R < 1 and consider the geometric series ∑n≥0 zn.
Clearly, we have f (z) = 1

1−z and

f (R(cos t + i sin t)) =
1

1− R(cos t + i sin t)
=

1− R(cos t− i sin t)
1 + R2 − 2Rcos t

.

By formula (5.7) it follows that for every n ≥ 0, we have

1 = cn =
1

2πRn

∫ 2π

0

(cosnt− i sinnt) [1− R(cos t− i sin t)]
1 + R2 − 2Rcos t

dt

=
1

2πRn

∫ 2π

0

cosnt− Rcos(n + 1)t− i [sinnt− Rsin(n + 1)t]
1 + R2 − 2Rcos t

dt.

Because the coefficients cn are real numbers, from (5.8) we obtain

1 =
1

2πRn

∫ 2π

0

cosnt− Rcos(n + 1)t
1 + R2 − 2Rcos t

dt,

and

0 =
1

2πRn

∫ 2π

0

sinnt− Rsin(n + 1)t
1 + R2 − 2Rcos t

dt.



Chapter 6
Recursive Processes

Many mathematical patterns can be described using the idea of recursion.
Recursion is a process in which each step of a pattern is dependent on the
step or steps that come before it. In this chapter we will present recursive
processes of first order, second order, and also higher-order.

In this process we will also investigate the Fibonacci numbers and related
sequences, for which we give exact formulae for the general terms, as well
as various properties, formulae and interpretations.

We begin with an illustrative example.
Recall the number Dn of derangements of a set with n elements is

Dn = n!
(

1− 1
1!

+
1
2!
− 1

3!
+ · · · (−1)n 1

n!

)
.

This formula is not useful if we want to compute Dn for some concrete
values of n. Two formulas connecting Dn with Dn−1, or with Dn−1 and Dn−2,
are given in the following examples.

Example 6.1 (The first recursive formula for Dn). The following formula holds:

Dn+1 = (n + 1)Dn + (−1)n+1, n = 1,2,3, . . . .

Solution. Just write

nDn−1 + (−1)n = nDn−1 + n!
(−1)n

n!

= n!(1− 1
1!

+
1
2!
− 1

3!
+ · · · (−1)n−1 1

(n− 1)!
) + n!

(−1)n

n!

= n!(1− 1
1!

+
1
2!
− 1

3!
+ · · · (−1)n 1

n!
) = Dn.

Finally, replace n by n + 1.

137
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Example 6.2 (Another recursive formula for Dn). The following formula holds:

Dn+2 = (n + 1)(Dn+1 + Dn), n = 1,2,3, . . .

Solution. Using twice the first recursion formula, we have

(n + 1)(Dn+1 + Dn) = (n + 1)Dn+1 + (n + 1)Dn

= (n + 1)Dn+1 + Dn+1 − (−1)n+1

= (n + 2)Dn+1 + (−1)n+2 = Dn+2.

Let k ≥ 1 be a fixed integer, and let ( fn)n≥0 be a sequence of functions in
k variables. A recursive sequence defined by ( fn)n≥1 is a sequence (an)n≥0
of numbers satisfying

an+k = fn+k(an+k−1, an+k−2, . . . , an)

for any n≥ 0, i.e., the (n+ k)th entry of the sequence is uniquely determined
by the k entries before it. The above relation is called a recursive relation
of order k. If the first k terms of the sequence (an)n≥0 are given, then the
sequence is perfectly determined by the recursive relation.

Properties of the sequence of functions ( fn)n≥0 will define various classes
of recursive relations. In Example 6.1, the sequence of functions ( fn)n≥0 , is
defined by the formula fn+1(x) = (n + 1)x + (−1)n+1, n = 1,2, . . . ; Then, in
Example 6.2, the sequence of functions ( fn)n≥1, is defined by the formula
fn+2(x) = (n + 1)(x + y), n = 1,2, . . . .

6.1 First order recursions

Let α, a,b be given real numbers. In many situations one must find the for-
mula for xn, where (xn)n≥0 is a sequence defined by x0 = α and

xn+1 = axn + b, n = 0,1,2, . . . . (6.1)

The sequence of functions ( fn)n≥0 is defined fn(x) = ax + b,n = 0,1, . . .
The following special cases are clear.

• If a = 1, b 6= 0, then (xn)n≥0 is an arithmetic sequence and

xn = α + nb.

• If a = 0, then (xn)n≥0 is the constant sequence xn = b, n = 1,2, . . . .
• If a = 1, b = 0, then (xn)n≥0 is a geometric sequence and

xn = aαn−1, n = 1,2, . . . .
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In the generic case a 6= 1, a 6= 0 and b 6= 0 we proceed as follows. In the
first step we find a real number x such that xn+1 + x = a(xn + x), n = 0,1, . . . .

For n = 0, we get x1 + x = a(x0 + x) and x1 = ax0 + b, hence x = b
a−1 .

For the second step, introduce the sequence (yn)n≥0, yn = xn + x. We obtain
yn+1 = ayn, n = 0,1, . . . , hence (yn)n≥0 is a geometric sequence.

It follows that yn = any0, n = 0,1,2, . . . , so

xn = an
(

α +
b

a− 1

)
− b

a− 1
, n = 0,1,2, . . . . (6.2)

Example 6.3. Consider the sequence (xn)n≥0 defined by x0 = 0 and xn+1 =

− 1
2 xn + 1, n = 0,1,2, . . . . Find a formula for xn.

Solution. Applying formula (6.2) for α = 0, a = − 1
2 , b = 1, we obtain

xn =

(
−1

2

)n
(

1
− 1

2 − 1

)
+

1
1
2 + 1

=

(
−1

2

)n(
−2

3

)
+

2
3

=
(−1)n+1

3 · 2n−1 +
2
3

, n = 0,1,2, . . .

Example 6.4. Let (xn)n≥0 be the sequence defined by x0 = α and xn+1 = xn + n,
n = 0,1,2, . . . . Find x2023.

Solution. Note that in this case the recursion defining the sequence (xn)n≥0
is not of type (6.1), hence we cannot apply the method above to find xn. In
this case we write the recursion relation for n = 0,1,2, . . . and get

x1 − x0 = 0
x2 − x1 = 1
x3 − x2 = 2
. . . . . . . . .
xn − xn−1 = n− 1.

Summing up all these relations we obtain

xn − x0 = 1 + 2 + · · ·+ n− 1 =
(n− 1)n

2
.

Therefore, xn = α + (n−1)n
2 and

x2023 = α +
2022 · 2023

2
.
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6.2 Second order linear recursions

Let (xn)n≥0 be the sequence defined by x0 = α0, x1 = α1, and

xn+2 = axn+1 + bxn, n = 0,1,2, . . . , (6.3)

where α0,α1, a,b are given real numbers.
One can define the sequence of functions ( fn)n≥0 given by the formula

fn(x,y) = ax + by, n = 0,1, . . . , where we have k = 2 and all the functions in
the sequence are linear. These properties motivate the name of the recursion.

In the search for solutions of the equation (6.3), one may try expressions
of the form xn = tn. By substitution in the original equation

tn
(

t2 − at− b
)
= 0.

A trivial solution is obtained for t = 0, so we shall assume for now that t 6= 0.
The characteristic equation of sequence (xn)n≥0, is defined by

t2 − at− b = 0. (6.4)

Depending on whether the two roots t1, t2 of the characteristic equation
(6.4) are distinct or equal, one may identify two cases.

Case 1. Distinct roots. If the roots t1, t2 of (6.4) are distinct (real or complex),
then the sequences (tn

1 )n≥0 and (tn
2 )n≥0 are both solutions of (6.3).

The general formula is given by the linear combination

xn = c1tn
1 + c2tn

2 , n = 0,1,2, . . . , (6.5)

where coefficients c1 and c2 are determined by the system of linear equations{
c1 + c2 = α0
c1t1 + c2t2 = α1. (6.6)

Case 2. Equal roots. If t1 = t2, then the solution of (6.3) is given by

xn = (c1 + c2n) tn
1 , n = 0,1,2, . . . , (6.7)

where coefficients c1 and c2 are determined by the system{
c1 = α0
(c1 + c2) t2 = α1.

The relations (6.5) and (6.7) are often called Binet-type formulae. Initially
formulated by Binet in 1843 in the context of the Fibonacci sequence, nu-
merous Binet-type formulae exist for similar sequences, including the case
of recurrent sequences of higher order.
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We now present a matrix formula which allows the calculation of the
terms of the sequence (xn)n≥0 given by (6.3). We start with two identities.

Remark. For a,b, c,d real numbers, the following identity holds(
0 1
1 0

)(
a b
c d

)(
0 1
1 0

)
=

(
d c
b a

)
,
(

0 1
1 0

)−1
=

(
0 1
1 0

)
. (6.8)

Theorem 6.1. The following formulae hold

1◦
(

xn−1 xn
xn xn+1

)
=

(
0 1
b a

)n−1(x0 x1
x1 x2

)
. (6.9)

2◦
(

xn+1 xn
xn xn−1

)
=

(
a b
1 0

)n−1(x2 x1
x1 x0

)
, (6.10)

where n = 1,2, . . ..

Proof. 1◦ Note that the following matrix relation holds for n ≥ 2(
xn−1 xn

xn xn+1

)
=

(
0 1
b a

)(
xn−2 xn−1
xn−1 xn

)
,

hence, we can write(
xn−1 xn

xn xn+1

)
=

(
0 1
b a

)n−1(x0 x1
x1 x2

)
.

2◦ By the remark we obtain(
0 1
b a

)
=

(
0 1
1 0

)(
a b
1 0

)(
0 1
1 0

)
=

(
0 1
1 0

)(
a b
1 0

)(
0 1
1 0

)−1
,(

0 1
b a

)k
=

(
0 1
1 0

)(
a b
1 0

)k(0 1
1 0

)−1
.

Therefore, it follows that(
xn+1 xn

xn xn−1

)
=

(
0 1
1 0

)(
xn−1 xn

xn xn+1

)(
0 1
1 0

)
=

(
0 1
1 0

)(
0 1
b a

)n−1(x0 x1
x1 x2

)(
0 1
1 0

)
=

(
0 1
1 0

)(
0 1
1 0

)(
a b
1 0

)n−1(0 1
1 0

)(
x0 x1
x1 x2

)(
0 1
1 0

)
=

(
a b
1 0

)n−1(x2 x1
x1 x0

)
. �
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6.2.1 Fibonacci, Lucas, Pell and Pell-Lucas numbers

Here we present the definitions some famous second-order linear sequences.

Fibonacci numbers: (Fn)n≥0 : 0,1,1,2,3,5,8,13,21,34,55,89, . . . .
Lucas numbers: (Ln)n≥0 : 2,1,3,4,7,11,18,29,47,76,123, . . . .
Pell numbers: (Pn)n≥0 : 0,1,2,5,12,29,70,169,408,985,2378, . . . .
Pell-Lucas numbers: (Qn)n≥0 : 2,2,6,14,34,82,198,478,1154,2786, . . . ,

indexed as A000045, A000032, A000129, and A002203, in the OEIS [190]. Be-
low we present some explicit formulae for the terms of these sequences.

Theorem 6.2. 1◦ (Fibonacci numbers) Let Fn be given by F0 = 0, F1 = 1 and

Fn+2 = Fn+1 + Fn, n = 0,1,2, . . . .

The formula of the general term is given by

Fn =
1√
5

[(
1 +
√

5
2

)n

−
(

1−
√

5
2

)n]
. (6.11)

2◦ (Lucas numbers) Let Ln be given by L0 = 2, L1 = 1 and

Ln+2 = Ln+1 + Ln, n = 0,1,2, . . . .

The formula of the general term is given by

Ln =

(
1 +
√

5
2

)n

+

(
1−
√

5
2

)n

. (6.12)

3◦ (Pell numbers) Let Pn be given by P0 = 0, P1 = 1 and

Pn+2 = 2Pn+1 + Pn, n = 0,1,2, . . . .

The formula of the general term is given by

Pn =
1

2
√

2

[(
1 +
√

2
)n
−
(

1−
√

2
)n]

. (6.13)

4◦ (Pell-Lucas numbers) Let Qn be given by Q0 = 2, Q1 = 2 and

Qn+2 = 2Qn+1 + Qn, n = 0,1,2, . . . .

The formula of the general term is given by

Qn =
(

1 +
√

2
)n

+
(

1−
√

2
)n

. (6.14)
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Proof. 1◦ The associated characteristic equation is

t2 − t− 1 = 0,

having the distinct roots t1 =
1 +
√

5
2

and t2 =
1−
√

5
2

. Solving the system{
c1 + c2 = 0
c1t1 + c2t2 = 1,

we get c1 =
1√
5

, c2 = −
1√
5

and the desired formula follows.

2◦ The proof is similar to that used at 1◦ for Fibonacci numbers, but now the
starting points are instead L0 = 2, L1 = 1.

3◦ The associated characteristic equation is

t2 − 2t− 1 = 0,

having the distinct roots t1 = 1 +
√

2 and t2 = 1−
√

2, while from the initial
conditions P0 = 0, P1 = 1 one obtains the formula.

4◦ The proof follows the same ideas as for Pell numbers, but here we have
the starting points Q0 = 2, Q1 = 2. �

These formulae can be extended naturally to negative integers, where
they yield the identities

F−n = (−1)n−1Fn, L−n = (−1)nLn, P−n = (−1)n−1Pn, Q−n = (−1)nQn,

valid for all n.

By formula (6.9), one can obtain expressions for the general terms of Fi-
bonacci, Lucas, Pell, and Pell-Lucas sequences, which involve powers of
some special matrices.

Theorem 6.3. The following formulae hold for all integers n ≥ 1(
Fn−1 Fn

Fn Fn+1

)
=

(
0 1
1 1

)n−1(0 1
1 1

)
=

(
0 1
1 1

)n
, (6.15)(

Ln−1 Ln
Ln Ln+1

)
=

(
0 1
1 1

)n−1(2 1
1 3

)
, (6.16)(

Pn−1 Pn
Pn Pn+1

)
=

(
0 1
1 2

)n−1(0 1
1 2

)
=

(
0 1
1 2

)n
, (6.17)(

Qn−1 Qn
Qn Qn+1

)
=

(
0 1
1 2

)n−1(2 2
2 6

)
. (6.18)
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Remark. Using formula (6.10) it follows that for n ≥ 1 we have(
Fn+1 Fn

Fn Fn−1

)
=

(
1 1
1 0

)n
;(

Ln+1 Ln
Ln Ln−1

)
=

(
1 1
1 0

)n−1(3 1
1 2

)
;(

Pn+1 Pn
Pn Pn−1

)
=

(
2 1
1 0

)n
;(

Qn+1 Qn
Qn Qn−1

)
=

(
2 1
1 0

)n−1(6 2
2 2

)
.

Taking determinants the identities presented in Theorem 6.3, one can ob-
tain the Cassini identities for these sequences.

Theorem 6.4. The following formulae hold for n ≥ 1

F2
n − Fn−1Fn+1 = (−1)n−1 (6.19)

L2
n − Ln−1Ln+1 = 5(−1)n (6.20)

P2
n − Pn−1Pn+1 = (−1)n−1 (6.21)

Q2
n −Qn−1Qn+1 = 8(−1)n. (6.22)

Some history and related generalisations of these results are discussed by
Melham in [179], or by Fairgrieve and Gould in [101]. For example, the rela-
tion (6.19) was apparently proved by Simson in 1753.

We give below an application of the classical Cassini identity.

Example 6.5. Compute ∑∞
n=1

(−1)n+1

Fn Fn+1
, where (Fn)n≥0 is the Fibonacci sequence.

Solution. Indeed, by the Cassini relation

F2
n = Fn−1Fn+1 + (−1)n+1,

the sum of the first n terms is given by

Sn =
n

∑
k=1

(−1)k+1

FkFk+1
= 1−

n

∑
k=2

Fk−1Fk+1 − F2
k

FkFk+1

= 1−
n

∑
k=2

(
Fk−1

Fk
− Fk

Fk+1

)
=

Fn

Fn+1
.

Taking limits, the sum of the series is given by

∞

∑
n=1

(−1)n+1

FnFn+1
= lim

n→∞
Sn =

2
1 +
√

5
=

√
5− 1
2

.
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One may consult [3, 132, 154] for more results on reciprocal sums.

Theorem 6.5. 1◦ (Golden ratio) The sequence of ratios of Fibonacci numbers

F2

F1
,

F3

F2
,

F4

F3
, . . . ,

Fn+1

Fn
, . . . ,

has the limit φ = 1+
√

5
2 ≈ 1.6180339887 · · · , called the golden ratio.

2◦ The sequence of ratios of Lucas numbers

L2

L1
,

L3

L2
,

L4

L3
, . . . ,

Ln+1

Ln
, . . .

also has the limit φ = 1+
√

5
2 .

3◦ The sequence of ratios of Pell numbers

P2

P1
,

P3

P2
,

P4

P3
, . . . ,

Pn+1

Pn
, . . . ,

has the limit 1 +
√

2, referred to as the silver ratio.
4◦ The sequence of ratios of Pell-Lucas numbers

Q2

Q1
,

Q3

Q2
,

Q4

Q3
, . . . ,

Qn+1

Qn
, . . . ,

has the limit 1 +
√

2.

Proof. 1◦ From the Binet formula (6.11), we have

Fn =
1√
5

[
φn − (−1)nφ−n] .

One can check that for n ≥ 0

Fn+1

Fn
=

φn+1 − (−1)n+1φ−n−1

φn − (−1)nφ−n .

Clearly, as φ > 1 the limit of this expression is φ.

2◦ From the Binet-type formula (6.12), we have

Ln = φn + (−1)nφ−n,

hence

Ln+1

Ln
=

φn+1 + (−1)n+1φ−n−1

φn + (−1)nφ−n .

and the solution follows.
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3◦ Similarly, from the Binet-type formula (6.13), we have

Pn =
1

2
√

2

[
αn − (−1)nα−n] ,

where α = 1 +
√

2. Therefore,

Pn+1

Pn
=

αn+1 − (−1)n+1α−n−1

αn − (−1)nα−n ,

hence the limit is α = 1 +
√

2.

4◦ By the Binet-type formula (6.14) we have

Qn = αn + (−1)nα−n,

where α = 1 +
√

2. We obtain

Qn+1

Qn
=

αn+1 + (−1)n+1α−n−1

αn + (−1)nα−n ,

and the conclusion follows. �

Remark. The golden ratio is linked to the proportions between parts of the
human body, musical notes and various patterns in nature. Many of these
occurrences are presented in the monograph of Koshy [149].

Example 6.6. Let (an)n≥0 be the sequence defined by a0 = 0, a1 = 1, and

an+1 − 3an + an−1 = 2(−1)n, n = 1,2, . . . .

Prove that an is a perfect square for all n ≥ 0.

Solution. Note that a2 = 1, a3 = 4, a4 = 9, a5 = 25, so a0 = F2
0 , a1 = F2

1 , a2 = F2
2 ,

a3 = F2
3 , a4 = F2

4 , a5 = F2
5 , where (Fn)n≥0 is the Fibonacci sequence. We prove

that an = F2
n for all n ≥ 0. Assume that ak = F2

k for all k ≤ n. Hence

an = F2
n , an−1 = F2

n−1, an−2 = F2
n−2. (6.23)

From the given relation we obtain an+1 − 3an + an−1 = 2(−1)n, and

an − 3an−1 + an−2 = 2(−1)n−1, n ≥ 2.

Summing up these equalities yields an+1 − 2an − 2an−1 + an−2 = 0, n ≥ 2.
Using this relation and (6.23) we obtain

an+1 = 2F2
n + 2F2

n−1 − F2
n−2 = (Fn + Fn−1)

2 + (Fn − Fn−1)
2 − F2

n−2

= F2
n+1 + F2

n−2 − F2
n−2 = F2

n+1.
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6.2.2 Reduction of order

As shown in [26] and [27], second order linear recurrent sequences can be
written as first-order non-linear recurrent sequences.

Theorem 6.6. The recurrence sequence (6.3) satisfies

x2
n − axnxn−1 − bx2

n−1 = (−1)n−1bn−1(α2
1 − aα0α1 − bα2

0), n = 1,2, . . . .
(6.24)

Proof. Taking determinants in both sides in formula (6.9) (or in the relation
(6.10)), we obtain the relation

xn−1xn+1 − x2
n = (−b)n−1

(
x0x2 − x2

1

)
,

which by the recurrence formula (6.3) gives

xn−1(axn + bxn−1)− x2
n = (−b)n−1

[
x0(ax1 + bx0)− x2

1

]
,

which represents the relation (6.24). �

From Theorem 6.4, or by applying Theorem 6.6 in the particular case of
Fibonacci, Lucas, Pell and Pell-Lucas numbers, one can obtain some other
classical results, which connect the sequence terms to just the previous term,
but now through a non-linear identity.

Theorem 6.7 (Cassini-type identities). The following formulae hold for n ≥ 1

F2
n − FnFn−1 − F2

n−1 = (−1)n−1 (6.25)

L2
n − LnLn−1 − L2

n−1 = 5(−1)n (6.26)

P2
n − 2PnPn−1 − P2

n−1 = (−1)n−1 (6.27)

Q2
n −QnQn−1 −Q2

n−1 = 8(−1)n. (6.28)

Solving the quadratic equations for Fn, Ln, Pn and Qn in Theorem 6.7, the
following first-order non-linear recurrent sequences can be obtained.

Corollary 6.1. The following relations hold for all integers n ≥ 1

Fn =
1
2

(
Fn−1 +

√
5F2

n−1 + 4(−1)n−1
)

(6.29)

Ln =
1
2

(
Ln−1 +

√
5L2

n−1 + 20(−1)n
)

(6.30)

Pn = Pn−1 +
√

2P2
n−1 + (−1)n−1 (6.31)

Qn = Qn−1 +
√

2Q2
n−1 + 8(−1)n. (6.32)



148 6 Recursive Processes

Extensions involving products of three or more recurrence terms are de-
tailed in [21, Section 2.2]. We here state a Melham-type result without proof.

Theorem 6.8. Consider the sequence (xn)n≥0 defined by the recurrence equation

xn+2 = axn+1 + bxn, n = 0,1, . . . ,

with x0 = α0, x1 = α1, where α0, α1, a, b are given real (or complex) numbers. The
following identity holds

xn+1xn+2xn+6 − x3
n+3 = D(−b)n+1(a3xn+2 − b2xn+1), (6.33)

where D = aα0α1 + bα2
0 − α2

1.

The following Melham-type identities are obtained for Fibonacci, Lucas,
Pell and Pell-Lucas numbers. The first of these was given in [179].

Theorem 6.9. The following formulae hold for n ≥ 1

Fn+1Fn+2Fn+6 − F3
n+3 = (−1)nFn (6.34)

Ln+1Ln+2Ln+6 − L3
n+3 = 3(−1)n+1Ln (6.35)

Pn+1Pn+2Pn+6 − P3
n+3 = (−1)n (8Pn+2 − Pn+1) (6.36)

Qn+1Qn+2Qn+6 −Q3
n+3 = 8(−1)n+1 (8Qn+2 −Qn+1) . (6.37)

Example 6.7. The sequence (xn)n≥1 is defined by x1 = 0 and

xn+1 = 5xn +
√

24x2
n + 1, n = 1,2, . . . .

Prove that all xn are positive integers.

Solution. It is clear that x1 < x2 < . . . . The recursive relation is equivalent to

x2
n+1 − 10xnxn+1 + x2

n − 1 = 0, n = 1,2, . . .

Replacing n by n− 1 we get

x2
n − 10xnxn−1 + x2

n−1 − 1 = 0, n = 2,3, . . .

It follows that xn+1 and xn−1 are the roots of quadratic equation

t2 − 10xnt + x2
n − 1 = 0,

hence xn+1 + xn−1 = 10xn. We obtain

xn+1 = 10xn − xn−1, n = 2,3, . . . , x1 = 0, x2 = 1.

A simple inductive argument shows that xn is a positive integer for any n.
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6.3 Higher order linear recurrences

In this section we present basic results in the theory of linear recurrent se-
quences. We first discuss the general term for recurrent sequences of higher
order defined for arbitrary initial values and recurrence coefficients, based
on the article of Andrica and Toader [33] and the monograph of Everest et al.
[100]. Some problems where significant progress was made recently are then
discussed [193]. The order of a linear recurrence relation can be reduced, as
shown by Andrica and Buzeţeanu [26, 27].

Let m ≥ 2 be a natural number. A linear recurrence sequence (LRS) is an
infinite sequence (xn)n≥0 satisfying the recurrence relation

xn = a1xn−1 + a2xn−2 + · · ·+ amxn−m, m ≤ n ∈N. (6.38)

If ai, i = 1, . . . ,m (recurrence coefficients), and αi, i = 1, . . . ,m (initial condi-
tions) are fixed complex numbers satisfying am 6= 0 and xi−1 = αi, i = 1, . . . ,m,
then the recurrence relation has order m and is uniquely defined.

The polynomial defined by

f (x) = xm − a1xm−1 − · · · − am−1x− am, (6.39)

is called the characteristic polynomial of the LRS (6.38). The general term
of the recursion is given by

xn = P1(n)zn
1 + · · ·+ Pm(n)zn

m,

where z1, . . . ,zm are roots of (6.39), and Pi, i = 1, . . . ,m are polynomials in n.
If z1, . . . ,zm are distinct, then the LRS is simple and P1, . . . , Pm are constant.

The theory of LRS is a vast subject with extensive applications in mathe-
matics and other sciences. Many properties and results are presented in the
monograph of Everest et al. [100]. Decision problems involving LRS with ra-
tional terms are discussed by Ouaknine in [193] and other of his papers.
Problem 1 (Skolem). Does xn = 0 for some n?
Problem 2. Is xn = 0 for infinitely many n?
Problem 3 (Positivity). Does xn ≥ 0 for all n?
Problem 4 (Ultimate Positivity). Does xn ≥ 0 for all but finitely many n?

Berstel and Mignotte showed that Problem 2 is decidable [62]. Ouaknine
made progress on Problem 3 for simple LRS of order m≤ 9 [194], or arbitrary
LRS of order m≤ 5 [195], respectively. Problem 4 holds for simple LRS [193].
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6.3.1 The general term

Let the sequence (xn)n≥0 be defined by the linear recurrence relation (6.38),
where a1, . . . , am ∈ C, am 6= 0 and x0, . . . , xm−1 ∈ C are given. We want to find
the general term xn for n ≥ m. For this we consider the generating function
of the sequence (xn)n≥0

F(z) = x0 + x1z + · · ·+ xnzn + · · · . (6.40)

The following result presents the relationship between homogeneous lin-
ear recurrent sequences and their generating function (see, e.g., [172]).

Theorem 6.10. Assume that the sequence (xn)n≥0 satisfies the homogeneous linear
recurrence relation (6.38). The generating function F associated with this sequence
can be written as a rational fraction F(z) = P(z)

Q(z) , where Q is a polynomial of degree
m with nonzero constant term and P is a polynomial of degree strictly less than m.

Conversely, for any such polynomials P and Q, there exists a unique sequence
(xn)n≥0 satisfying the linear homogeneous recurrence relation (6.38), having the
generating function given by the rational function P/Q.

Proof. From (6.38) and (6.40), the generating function F for the sequence
(xn)n≥0 can be written as

F(z) =
m−1

∑
j=0

xjzj +
∞

∑
n=m

xnzn =
m−1

∑
j=0

xjzj +
∞

∑
n=m

(
m

∑
j=1

ajxn−j

)
zn

=
m−1

∑
j=0

xjzj +
m

∑
j=1

aj

∞

∑
n=k

xn−jzn =
m−1

∑
j=0

xjzj +
m

∑
j=1

aj

∞

∑
n=m−j

xnzn+j

=
m−1

∑
j=0

xjzj + amzm
∞

∑
n=0

xnzn +
m−1

∑
j=1

ajzj

(
∞

∑
n=0

xnzn −
m−j−1

∑
i=0

xizi

)

=
m−1

∑
j=0

xjzj + F(z)
m

∑
j=1

ajzj −
m−1

∑
j=1

ajzj
m−j−1

∑
i=0

xizi

= F(z)
m

∑
j=1

ajzj +
m−1

∑
j=0

xjzj −
m−1

∑
s=1

zs
s

∑
j=1

ajxs−j.

It follows that

F(z)

(
1−

m

∑
j=1

ajzj

)
=

m−1

∑
j=0

xjzj −
m−1

∑
s=1

zs
s

∑
j=1

ajxs−j

= x0 +
m−1

∑
s=1

(
xs −

s

∑
j=1

ajxs−j

)
zs.
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We obtain the polynomials P ∈ Cm−1[z] and Q ∈ Cm[z] defined by

P(z) = x0 +
m−1

∑
s=1

(
xs −

s

∑
j=1

ajxs−j

)
zs

Q(z) = 1−
m

∑
j=1

ajzj.

Conversely, if (xn)n≥0 is the sequence having the generating function
F(z) = P(z)/Q(z), we can write

F(z) =
∞

∑
n=0

xnzn, P(z) =
k

∑
j=0

bjzj, Q(z) = 1−
m

∑
j=1

ajzj.

Clearly, from F(z) = P(z)
Q(z) we obtain the formula(
1−

m

∑
j=1

ajzj

)(
∞

∑
n=0

xnzn

)
=

m

∑
j=0

bjzj.

Writing polynomial Q as an infinite series with aj = 0 for j > m, we have

∞

∑
n=0

xnzn −
∞

∑
n=0

(
n

∑
j=1

ajxn−j

)
=

m

∑
j=0

bjzj.

Identifying the coefficients of zn, one obtains the recurrence relation

xn =
m

∑
j=1

ajxn−j, n ≥ m.

�

Remark. We can write F as a sum of simple fractions. If the polynomial

f ∗(z) = 1− a1z− · · · − akzk,

has the distinct roots z∗1 , . . . ,z∗m, with multiplicities q1, . . . ,qm, then

F(z) =
P(z)
f ∗(z)

=
m

∑
i=1

qi

∑
j=1

fij(
z− z∗i

)j . (6.41)

Lemma 6.1. The coefficients fij in formula (6.41) is

fij =
1

(qi − j)!
[(z− z∗i )

qi F(z)](qi−j)
z=z∗i

, j = 1, . . . ,qi, i = 1, . . . ,m. (6.42)
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Proof. By (6.41) we have for i = 1, . . . ,m

F(z) =
fi1

z− z∗i
+ · · ·

fiqi(
z− z∗i

)qi
+ hi(z),

or

(z− z∗i )
qi F(z) = fi1 (z− z∗i )

qi−1 + · · ·+ fiqi + (z− z∗i )
qi hi(t),

which gives (6.42) by successive differentiation. �

Lemma 6.2. If u 6= 0 and
∣∣ z

u

∣∣ < 1, then for all integers j ≥ 1 we have

1
(z− u)j = (−1)ju−j ∑

n≥0

(
n + j− 1

j− 1

)( z
u

)n
. (6.43)

Proof. The result follows from operations with formal series given in [79],
by differentiating the identity below j− 1 times with respect to z

1
z− u

= − 1
u ∑

n≥0

( z
u

)n
.

�

Theorem 6.11. The sequence (xn)n≥0 defined by (6.38) is given by

xn = P1(n)zn
1 + · · ·+ Pm(n)zn

m, n ≥ k, (6.44)

where the z1, . . . ,zm are the distinct roots of the polynomial

f (z) = zk − a1zk−1 − · · · − ak,

with the orders of multiplicity q1, . . . ,qm, and

Pi(n) =
qi

∑
j=1

fijz
j
i

(
n + j− 1

j− 1

)
, i = 1, . . . ,m. (6.45)

Proof. As zi =
1
z∗i

, from (6.41) and (6.43) we get

F(z) =
m

∑
i=1

qi

∑
j=1

fij(
z− z∗i

)j =
m

∑
i=1

qi

∑
j=1

∑
n≥0

(−1)j fijz
j
i

(
n + j− 1

j− 1

)(
z
z∗i

)n

= ∑
n≥0

m

∑
i=1

qi

∑
j=1

(−1)jzn+j
i fij

(
n + j− 1

j− 1

)
zn = ∑

n≥0

(
m

∑
i=1

Pi(n)zn
i

)
zn,

which is exactly (6.44). �
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Example 6.8. The sequence (xn)n≥1 is defined as x1 = 20, x2 = 12 and

xn+2 = xn + xn+1 + 2
√

xnxn+1 + 121, n ≥ 1.

1◦ Compute x10;
2◦ Determine with justification if every term in the sequence is an integer.

Solution. It is clear that x3 = 20 + 12 + 2 · 19 = 70. Notice that

xn+3 = xn+1 + xn+2 + 2
√

xn+1xn+2 + 121

= xn+1 + xn+2 + 2
√

xn+1

(
xn + xn+1 + 2

√
xnxn+1 + 121

)
+ 121

= xn+1 + xn+2 + 2
√

x2
n+1 + 2

√
xnxn+1 + 121 + xnxn+1 + 121

= xn+1 + xn+2 + 2
(

xn+1 +
√

xnxn+1 + 121
)

= 3xn+1 + xn+2 + xn+2 − xn − xn+1

= 2xn+2 + 2xn+1 − xn.

Therefore, it follows that (xn)n≥1 is an integer sequence and we can compute
x4 = 144, x5 = 416, x6 = 1010, x7 = 2788, x8 = 7260, x9 = 19046, x10 = 49824.

The characteristic equation of (xn)n≥1 is t3 − 2t2 − 2t + 1 = 0, with the
roots t1 = −1, t2 =

3+
√

5
2 , t3 =

3−
√

5
2 . If follows that

xn = c1(−1)n + c2

(
3 +
√

5
2

)n

+ c3

(
3−
√

5
2

)n

, n = 1,2, . . . .

Solving the system x1 = 20, x2 = 12, x3 = 70, we obtain the coefficients

c1 = −
54
5

, c2 =
12
5

+
2
√

5
5

, c3 =
12
5
− 2
√

5
5

.

Furthermore, one can write

xn =
54
5
(−1)n+1 +

1
5

(
6 + 6 + 2

√
5
)(6 + 2

√
5

4

)n

+
1
5

(
6 + 6− 2

√
5
)(6− 2

√
5

4

)n

=
54
5
(−1)n+1 +

6
5

L2n +
4
5

L2n+2,

where Lm is the mth Lucas number.
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6.3.2 The space of solutions

A solution of the recurrence equation (6.38) is any function x : N→ C with

x(n) = a1x(n− 1) + a2x(n− 2) + · · ·+ amx(n−m), n ≥ m. (6.46)

(The notation x(n) is only used in this section, while for the rest of the chap-
ter the more compact subscript notation xn is preferred). As each solution
is completely determined by m initial conditions x(0), x(1), . . . , x(m− 1), the
set containing the solutions of (6.46) forms a vector space V of dimension m
over C. The general term of the sequence satisfying the recurrence relation
(6.46) is then a linear combination of m functions which form a basis for V.

For λ 6= 0, the characteristic equation (6.47) is equivalent to

λm = a1λm−1 + a2λm−2 + · · ·+ am−1λ + am.

It may be assumed without loss of generality that the order of the recurrence
relation can not be reduced, therefore cm 6= 0. For finding a base of the vec-
tor space V, one may first check that the functions w(n) = λn (λ 6= 0) are a
solution of (6.46), whenever λ is a zero of the characteristic polynomial

f (x) = xm − a1xm−1 − a2xm−2 − · · · − am−1x− am. (6.47)

As a complex polynomial, f (x) has exactly m roots. Examples of bases for
V for the cases when the roots of (6.47) are all distinct, all equal, or distinct
with arbitrary multiplicities are presented below.

Proposition 6.1. If the polynomial f (6.47) has m distinct roots z1, . . . ,zm, then

f1(n) = zn
1 , f2(n) = zn

2 , . . . , fm(n) = zn
m,

form a basis of the vector space V of solutions for the recurrence relation (6.46).

The proof is based on two facts. First, each function fi(n) is a solution of
(6.46). Second, the Vandermonde determinant involving the first m values
1,zi, . . . ,zm−1

i of each function fi(n) is non-zero for distinct values z1, . . . ,zm.
A detailed proof is presented in [134, Theorem 1].

Proposition 6.2. If z is a unique root with multiplicity m of the the polynomial f
given by (6.47), then the m sequences

f1(n) = zn, f2(n) = nzn, . . . , fm(n) = nm−1zn,

form a basis of the vector space V of solutions for the recurrence relation (6.46).

The idea of the argument is that a multiple root of polynomial (6.47) is also
a root of its derivative. A detailed proof is given in [134, Corollary 1].
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Proposition 6.3. If a characteristic polynomial of a linear recurrence relation of
order d has m distinct roots z1, . . . ,zm having the multiplicities d1, . . . ,dm (i.e., the
degree is d1 + · · ·+ dm = d), then the d sequences

fij(n) = nj−1zn
i , 1≤ i ≤ m, 1≤ j ≤ di, (6.48)

form a basis of the vector space V of solutions for the recurrence relation (6.46).

A proof of this results is given in [134, Theorem 2].

6.3.3 Reduction of order for LRS

As suggested by Andrica and Buzeţeanu in 1982 [26], a second order linear
recurrence equation can be reduced to a non-linear recurrence equation of
the first order (see Theorem 6.6). In particular, such first order formulae ob-
tained for Fibonacci, Lucas, Pell and Pell-Lucas numbers were presented in
Theorem 6.7.

Here we present a more general result, concerning the reduction of order
for higher order linear recurrence relation, based on results proved by An-
drica and Buzeţeanu in 1985 [27]. Specifically, we show that if a sequence
(xn)n≥0 satisfies a linear recurrence of order m ≥ 2, then there exists a poly-
nomial relation between any m consecutive terms. This shows that the linear
recurrence relation of order m is in fact reduced to a nonlinear recurrence re-
lation of order m− 1.

Let m ≥ 2 be an integer and let the sequence (xn)n≥1 satisfying

xn =
m

∑
r=1

arxn−r, n > m, (6.49)

where the starting values xi = αi, and recurrence coefficients ai, i = 1, . . . ,m,
are given real (or complex) numbers such that am 6= 0.

For n ≥ m, let us consider the determinant

Dn =

∣∣∣∣∣∣∣∣∣∣
xn+m−1 xn+m−2 . . . xn+1 xn
xn+m−2 xn+m−3 . . . xn xn−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn+1 xn . . . xn−m+3 xn−m+2
xn xn−1 . . . xn−m+2 xn−m+1

∣∣∣∣∣∣∣∣∣∣
, (6.50)

for which we can obtain a recursive formula.

Theorem 6.12. Let (xn)n≥1 be a sequence given by (6.49) and let Dn be defined by
formula (6.50). For any n ≥ m, the following relation holds

Dn = (−1)(m−1)(n−m)an−m
m Dm. (6.51)
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Proof. Following the steps outlined in [145], [174] and [213] (for m = 2), we
introduce the matrix

An =


xn+m−1 xn+m−2 . . . xn+1 xn
xn+m−2 xn+m−3 . . . xn xn−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn+1 xn . . . xn−m+3 xn−m+2
xn xn−1 . . . xn−m+2 xn−m+1

 . (6.52)

It is easy to see that

An+1 =


0 1 0 0 . . . 0 0 0
0 0 1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 1 0
0 0 0 0 . . . 0 0 1
a1 a2 a3 a4 . . . am−2 am−1 am

An, (6.53)

hence

An =


0 1 0 0 . . . 0 0 0
0 0 1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 1 0
0 0 0 0 . . . 0 0 1
a1 a2 a3 a4 . . . am−2 am−1 am



n−m

Am. (6.54)

By taking determinants in (6.54), we obtain(
(−1)m−1am

)n−m
Dm = Dn,

for n ≥ m, which ends the proof. �

Theorem 6.13. Let (xn)n≥1 be a sequence given by (6.49). There is a polynomial
function of degree m defined by Fm : Cm→ C, so that the relation below holds

Fm(xn, xn−1, . . . , xn−m+1) = (−1)(m−1)(n−m)an−m
m Fm(αm,αm−1, . . . ,α1).

(6.55)

Notice that from the recurrence relation (6.49) one can compute Dm as a
function of the known values α1,α2, . . . ,αm. For the same reason, one can also
express Dn as a function of the terms xn, xn−1, . . . , xn−m+1. Thus, there exists
a polynomial function of degree m, such that the relation (6.55) is true. If we
suppose that the equation (6.55) can be solved with respect to xn, this results
in an expression involving only the terms xn−1, xn−2, . . . , xn−m+1. However,
the resulting expression is in general very complicated, as shown bellow.
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Example 6.9. For m = 2 we obtain

F2(x,y) = x2 − a1xy− a2y2, (6.56)

and the sequence (xn)n≥1 is given by

xn = a1xn−1 + a2xn−2, n ≥ 3, x1 = α1, x2 = α2, (6.57)

where the relation F2(xn, xn−1) = (−1)nan−2
2 F2(α2,α1) holds. This relation was

proved by induction in [53]. Writing the relation explicitly we have

(2xn − a1xn−1)
2 = (a2

1 + 4a2)x2
n−1 + 4(−1)n−1an−2

2

(
a2α2

1 + a1α1α2 − α2
2

)
.

(6.58)

Under some special conditions on (xn)n≥1, we can express xn as an explicit formula
of xn−1. Moreover, if the sequence satisfies the second order recurrence equation
(6.57) with a1, a2 and α1,α2 integers, by (6.58) then

(a2
1 + 4a2)x2

n−1 + 4(−1)n−1an−2
2

(
a2α2

1 + a1α1α2 − α2
2

)
,

is a perfect square. This results extends [138].

Example 6.10. Simple computations show that for m = 3 we have

F3(x,y,z) =− x3 − (a3 + a1a2)y3 − a2
3z3 + 2a1x2y + a2x2z− (a2

2 + a1a3)y2z

− (a2
1 − a2)xy2 − a1a3xz2 − 2a2a3yz2 + (3a3 − a1a2)xyz.

By (6.55) we obtain that for the linear recurrence relation

xn = a1xn−1 + a2xn−2 + a3xn−3, n ≥ 4, x1 = α1, x2 = α2, x3 = α3, (6.59)

one has the relation F3(xn, xn−1, xn−2) = an−3
3 F3(α3,α2,α1).

Example 6.11. The Tribonacci numbers are defined by the recurrence relation

Tn = Tn−1 + Tn−2 + Tn−3, n ≥ 4, (6.60)

where T1 = 1, T2 = 1 and T3 = 2. In our notation, we have α1 = 1, α2 = 1, α3 = 2,
and a1 = a2 = a3 = 1. Substituting in Example 6.10, we obtain

F3(x,y,z) = −x3 − 2y3 − z3 + 2x2y + x2z− 2y2z− xz2 − 2yz2 + 2xyz.

The nonlinear relation satisfied by Tribonacci numbers is

F3(Tn, Tn−1, Tn−2) = F3(α3,α2,α1),

where F3(α3,α2,α1) = −8− 2− 1 + 8 + 4− 2− 2− 2 + 4 = −1.
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6.4 The sequences of Lucas and Pell-Lucas polynomials

The Lucas and Pell-Lucas polynomials Un,Vn ∈ Z[x,y], n = 0,1, . . . , are de-
fined by the formulae

Un(x,y) =
xn − yn

x− y
, (6.61)

Vn(x,y) = xn + yn. (6.62)

The polynomials Un and Vn are symmetric and we have degUn = n − 1,
n = 1,2, . . . , and degVn = n, n = 0,1, . . . . Also from (6.61) we can extend the
sequence Un(x,y) for n = 0, by U0(x,y) = 0.

On the other hand, the sequences (Un(x,y))n≥0 and (Vn(x,y))n≥0 satisfy
the same recursive relation of order 2, with different initial values

Un+2 = (x + y)Un+1 − xyUn, U0 = 0, U1 = 1, (6.63)
Vn+2 = (x + y)Vn+1 − xyVn, V0 = 2, V1 = x + y. (6.64)

The Fibonacci, Lucas, Pell and Pell-Lucas numbers can be obtained as partic-
ular instances of the polynomials Un and Vn for special pairs of real numbers
(x,y) as detailed below

Fn = Un

(
1 +
√

5
2

,
1−
√

5
2

)
, n = 0,1, . . . ,

Ln = Vn

(
1 +
√

5
2

,
1−
√

5
2

)
, n = 0,1, . . . ,

Pn = Un

(
1 +
√

2,1−
√

2
)

, n = 0,1, . . . ,

Qn = Vn

(
1 +
√

2,1−
√

2
)

, n = 0,1, . . . .

The polynomials Un and Vn have similar algebraic properties as the Fi-
bonacci, Lucas, Pell and Pell-Lucas numbers. For instance, we have the fol-
lowing matrix forms valid for n = 1,2, . . .(

Un+1 −xyUn
Un −xyUn−1

)
=

(
x + y −xy

1 0

)n
, (6.65)(

Vn+1 −xyVn
Vn −xyVn−1

)
=

(
x + y −xy

1 0

)n(x + y −2xy
2 −(x + y)

)
, (6.66)

which recover the matrix identities for second order recurrent sequences
shown in Theorem 6.1, and in particular polynomials obtained for the cases
(x,y) =

(
1+
√

5
2 , 1−

√
5

2

)
and (x,y) =

(
1 +
√

2,1−
√

2
)

, respectively.
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6.4.1 Ordinary generating functions of (Un)n≥0, (Vn)n≥0

Using the formulae for Un and Vn (6.61), one obtains

∞

∑
n=0

Un(x,y)zn =
1

x− y

∞

∑
n=0

(xn − yn) zn (6.67)

=
1

x− y

(
1

1− xz
− 1

1− yz

)
=

z
(1− xz) (1− yz)

=
z

1− (x + y)z + (xy)z2 , (6.68)

∞

∑
n=0

Vn(x,y)zn =
∞

∑
n=0

(xn + yn) zn (6.69)

=
1

1− xz
+

1
1− yz

=
2− (x + y)z

1− (x + y)z + (xy)z2 . (6.70)

Substituting for the polynomials given in Section 1.2.3, we obtain the gen-
erating functions for special classical polynomials.

The Fibonacci polynomials. Since fn(x) =Un

(
x+
√

x2+4
2 , x−

√
x2+4
2

)
, we have

∞

∑
n=0

fn(x)zn =
z

1− xz− z2 .

The Lucas polynomials. Since ln(x) = Vn

(
x+
√

x2+4
2 , x−

√
x2+4
2

)
, we have

∞

∑
n=0

ln(x)zn =
2− xz

1− xz− z2 .

The Pell polynomials. As pn(x) = Un

(
x +
√

x2 + 1, x−
√

x2 + 1
)

, we have

∞

∑
n=0

pn(x)zn =
z

1− 2xz− z2 .

The Pell-Lucas polynomials. As qn(x) = Vn

(
x +
√

x2 + 1, x−
√

x2 + 1
)

∞

∑
n=0

qn(x)zn =
2− 2xz

1− 2xz− z2 .
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The Chebyshev polynomials of the first kind. Since we have the relation
Tn(x) = 1

2 Vn

(
x +
√

x2 − 1, x−
√

x2 − 1
)

, if follows that

∞

∑
n=0

Tn(x)zn =
1− 2xz

1− 2xz + z2 .

The Chebyshev polynomials of the second kind. Since we have the relation
un(x) = Un+1

(
x +
√

x2 − 1, x−
√

x2 − 1
)

, it follows that

∞

∑
n=0

un(x)zn =
1

1− 2xz + z2 .

The Hoggatt-Bicknell-King polynomial of Fibonacci kind. Since we have
gn(x) = Un

(
x+
√

x2−4
2 , x−

√
x2−4
2

)
, it follows that

∞

∑
n=0

gn(x)zn =
z

1− xz + z2 .

The Hoggatt-Bicknell-King polynomial of Lucas kind. By the relation
hn(x) = Vn

(
x+
√

x2−4
2 , x−

√
x2−4
2

)
, one has

∞

∑
n=0

hn(x)zn =
2− xz

1− xz + z2 .

The Jacobsthal polynomials. Since Jn(x) =Un

(
1+
√

8x+1
2 , 1−

√
8x+1
2

)
, we have

∞

∑
n=0

Jn(x)zn =
z

1− z− 4xz2 .

The Morgan-Voyce polynomials. As Bn−1(x) = gn(x + 2), g0(x) = 0, we get

∞

∑
n=0

Bn(x)zn =
∞

∑
n=0

gn+1(x)zn =
1
z

∞

∑
n=1

gn(x + 2)zn =
1

1− (x + 2)z + z2 .

The Brahmagupta polynomials. For the integer parameter t > 0 we have
xn(x,y) = 1

2 Vn

(
x + y

√
t, x− y

√
t
)

, yn(x,y) = yUn

(
x + y

√
t, x− y

√
t
)

, so

∞

∑
n=0

xn(x,y)zn =
1− xz

1− 2xz + (x2 − y2t)z2

∞

∑
n=0

yn(x,y)zn =
yz

1− 2xz + (x2 − y2t)z2 .
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6.4.2 The explicit formula for the Fibonacci, Lucas, Pell and
Pell-Lucas polynomials

Using the ordinary generating functions of the Fibonacci, Lucas, Pell and
Pell-Lucas polynomials, we can derive the following algebraic expressions.

Theorem 6.14. For every positive integer n, we have

1◦ fn(x) =
b n−1

2 c
∑
j=0

(
n− j− 1

j

)
xn−2j−1; (6.71)

2◦ ln(x) =
b n

2 c
∑
j=0

n
n− j

(
n− j

j

)
xn−2j; (6.72)

3◦ pn(x) =
b n−1

2 c
∑
j=0

(
n− j− 1

j

)
2n−2j−1xn−2j−1; (6.73)

4◦ qn(x) =
b n

2 c
∑
j=0

n
n− j

(
n− j

j

)
2n−2jxn−2j. (6.74)

Proof. 1◦ Using the geometric series we can write

∞

∑
n=0

fn(x)zn =
z

1− xz− z2 =
z

1− (x + z)z

=
∞

∑
m=0

(x + z)mzm+1

=
∞

∑
n=0

b n−1
2 c

∑
j=0

(
n− j− 1

j

)
xn−2j−1

 zn,

and the formula follows by identification of the corresponding coefficients.

2◦ Following the same idea as before, we have

∞

∑
n=0

ln(x)zn =
2− xz

1− xz− z2 =
2− xz

1− (x + z)z

=
∞

∑
m=0

(2− xz)(x + z)mzm

=
∞

∑
n=0

b n
2 c

∑
j=0

n
n− j

(
n− j

j

)
xn−2j

 zn,

hence the formula (6.72) follows.
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3◦ From the generating function of the Pell numbers, we obtain

∞

∑
n=0

pn(x)zn =
z

1− 2xz− z2 =
z

1− (2x + z)z

=
∞

∑
m=0

(2x + z)mzm+1

=
∞

∑
n=0

b n−1
2 c

∑
j=0

(
n− j− 1

j

)
2n−2j−1xn−2j−1

 zn,

and the formula follows by identifying the corresponding coefficients.

4◦ Analogously, for the Pell-Lucas polynomials, we have

∞

∑
n=0

qn(x)zn =
2− 2xz

1− 2xz− z2 =
2− 2xz

1− (2x + z)z

= 2
∞

∑
m=0

(1− xz)(2x + z)mzm

=
∞

∑
n=0

b n
2 c

∑
j=0

n
n− j

(
n− j

j

)
2n−2jxn−2j

 zn,

and the desired formula follows. �

As Fn = fn(1), by (6.71) we obtain the Lucas formula in Theorem 6.14
with a different proof. Similar formulae hold for Ln, Pn and Qn.

Corollary 6.2. The following relations hold:

1◦ Fn =
b n−1

2 c
∑
j=0

(
n− j− 1

j

)
; (6.75)

2◦ Ln =
b n

2 c
∑
j=0

n
n− j

(
n− j

j

)
; (6.76)

3◦ Pn =
b n−1

2 c
∑
j=0

(
n− j− 1

j

)
2n−2j−1; (6.77)

4◦ Qn =
b n

2 c
∑
j=0

n
n− j

(
n− j

j

)
2n−2j. (6.78)
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6.4.3 Applications to classical sequences

Using (x,y) =
(

1+
√

5
2 , 1−

√
5

2

)
one obtains the generating functions which

correspond to Fibonacci and Lucas sequences. In this case, xy = −1 and
x + y = 1, hence by the formulae (6.67) and (6.69) we have

∞

∑
n=0

Fnzn =
z

1− z− z2

∞

∑
n=0

Lnzn =
2− z

1− z− z2 .

For (x,y) =
(

1 +
√

2,1−
√

2
)

, the generating functions for Pell and Pell-
Lucas sequences are obtained. Indeed, here xy =−1 and x + y = 2, hence by
the formulae (6.67) and (6.69) we have

∞

∑
n=0

Pnzn =
z

1− 2z− z2

∞

∑
n=0

Qnzn =
2− 2z

1− 2z− z2 .

In many situations, it is possible to obtain the generating function of
the sequence (xn)n≥0 using only the recurrence relation, and then to derive
some properties of the sequence.

We illustrate this idea for second order recurrence relations. Assume that
(xn)n≥0 is given by xn+2 = axn+1 + bxn, n = 0,1, . . . , where x0 = α0 and x1 =
α1, while a,b are real (or complex) numbers with b 6= 0. We can write

F(z) =
∞

∑
n=0

xnzn = x0 + x1z +
∞

∑
n=2

xnzn

= α0 + α1z +
∞

∑
n=2

(axn−1 + bxn−2) zn

= α0 + α1z + az (F(z)− α0) + bz2F(z),

and obtain the following relation

F(z) =
α0 + (α1 − aα0) z

1− az− bz2 . (6.79)

From formula (6.79) we can derive the Binet-type formula for the sequence
(xn)n≥0. Let t1, t2 be the roots of the characteristic equation associated to the
sequences, t2 − at− b = 0.



164 6 Recursive Processes

Clearly, we have 1− az− bz2 = (1− t1z)(1− t2z), hence the decomposi-
tion of the fraction in (6.79) can be written as

α0 + (α1 − aα0) z
1− az− bz2 =

A
1− t1z

+
B

1− t2z
, (6.80)

where the values of A and B can be determined by identifying the coeffi-
cients in the equality α0 + (α1 − aα0) z = A(1− t2z) + B(1− t1z). This leads
to the system A + B = α0 and t2 A + t1B = aα0 − α1. If t1 6= t2, then we get

A =
α0t1 + α1 − aα0

t1 − t2
, B = −α0t2 + α1 − aα0

t1 − t2
.

We can derive the explicit formula for xn by expanding the fractions in (6.80)
as geometric series, and the comparing coefficients of zn on either side. It
follows that for n = 0,1, . . . , we have

xn = Atn
1 + Btn

2

=
1

t1 − t2
[(α0t1 + α1 − aα0) tn

1 − (α0t2 + α1 − aα0) tn
2 ] . (6.81)

If t1 = t2, then it is possible to derive the formula for xn directly from (6.81),
by taking the limit t2→ t1. We obtain

xn = α0 lim
t2→t1

tn+1
1 − tn+1

2
t1 − t2

+ (α1 − aα0) lim
t2→t1

tn
1 − tn

2
t1 − t2

= α0(n + 1)tn
1 ++(α1 − aα0)ntn−1

1

= [α0t1 + (α0t1 + α1 − aα0)n] tn−1
1 , n = 0,1, . . . .

Example 6.12. Find the recurrence relation satisfied by the sequence (Frn)n≥0, con-
sisting of those Fibonacci numbers whose index is a multiple of r, where r is a fixed
positive integer.

Solution. Denoting α = 1+
√

5
2 and β = 1−

√
5

2 , one may write

∞

∑
n=0

Frnzn =
∞

∑
n=0

1√
5
(αrn − βrn) zn

=
1√
5

(
∞

∑
n=0

αrnzn −
∞

∑
n=0

βrnzn

)

=
1√
5

(
∞

∑
n=0

(αrz)n − (βrz)n

)

=
1√
5

(
1

1− αrz
+

1
1− βrz

)
.
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We also obtain the relation

∞

∑
n=0

Frnzn =
1√
5

(
1

1− αrz
+

1
1− βrz

)

=

1√
5
(αr − βr) z

1− (αr + βr) z + (αβ)r z2

=
Frz

1− Lrz + (−1)rz2 ,

where Lr denotes the rth Lucas number. The denominator leads immedi-
ately to the recurrence relation

Fr(n+2) = LrFr(n+1) + (−1)r+1Fr(n−1), n = 0,1, . . . . (6.82)

6.4.4 Exponential generating functions of (Un)n≥0, (Vn)n≥0

Using the formulae for the polynomials Un and Vn (6.61), we have

∞

∑
n=0

1
n!

Un(x,y)zn =
1

x− y

∞

∑
n=0

1
n!

(xn − yn) zn

=
1

x− y

[
∞

∑
n=0

1
n!
(xz)n −

∞

∑
n=0

1
n!
(yz)n

]
=

exz − eyz

x− y
. (6.83)

and

∞

∑
n=0

1
n!

Vn(x,y)zn =
∞

∑
n=0

1
n!

(xn + yn) zn = exz + eyz. (6.84)

Here we use the hyperbolic functions sinhu = eu−e−u

2 and coshu = eu+e−u

2 .

The Fibonacci polynomials. Since fn(x) =Un

(
x+
√

x2+4
2 , x−

√
x2+4
2

)
, we have

∞

∑
n=0

1
n!

fn(x)zn =
1√

x2 + 4

(
e

x+
√

x2+4
2 ·z − e

x−
√

x2+4
2 ·z

)

=
2e

xz
2

√
x2 + 4

e
1
2 z
√

x2+4 − e−
1
2 z
√

x2+4

2
=

2e
xz
2

√
x2 + 4

sinh
z
√

x2 + 4
2

.

The Lucas polynomials. Since ln(x) = Vn

(
x+
√

x2+4
2 , x−

√
x2+4
2

)
, we have
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∞

∑
n=0

1
n!

ln(x)zn = e
x+
√

x2+4
2 ·z + e

x−
√

x2+4
2 ·z

= 2e
xz
2

e
1
2 z
√

x2+4 + e−
1
2 z
√

x2+4

2
= 2e

xz
2 cosh

z
√

x2 + 4
2

.

The Pell polynomials. As pn(x) = Un

(
x +
√

x2 + 1, x−
√

x2 + 1
)

, we have

∞

∑
n=0

1
n!

pn(x)zn =
2exz
√

x2 + 1
sinh z

√
x2 + 1.

The Pell-Lucas polynomials. As qn(x) = Vn

(
x +
√

x2 + 1, x−
√

x2 + 1
)

∞

∑
n=0

1
n!

qn(x)zn = 2exz cosh z
√

x2 + 1.

The Chebyshev polynomials of the first kind. Since we have the relation
Tn(x) = 1

2 Vn

(
x +
√

x2 − 1, x−
√

x2 − 1
)

, it follows that

∞

∑
n=0

1
n!

Tn(x)zn = exz cosh z
√

x2 − 1.

The Chebyshev polynomials of the second kind. We have the relation
un(x) = Un+1

(
x +
√

x2 − 1, x−
√

x2 − 1
)

, while by (6.83) we deduce that

∞

∑
n=0

1
n!

Un+1(x,y)zn =
xexz − yeyz

x− y
.

It follows that

∞

∑
n=0

1
n!

un(x)zn =

(
x +
√

x2 − 1
)

e(x+
√

x2−1)z −
(

x−
√

x2 − 1
)

e(x−
√

x2−1)z

2
√

x2 − 1

=
exz

√
x2 − 1

(
x sinhz

√
x2 − 1 +

√
x2 − 1coshz

√
x2 − 1

)
.

The Hoggatt-Bicknell-King polynomial of Fibonacci kind. Since we have
gn(x) = Un

(
x+
√

x2−4
2 , x−

√
x2−4
2

)
, it follows that

∞

∑
n=0

1
n!

gn(x)zn =
2e

xz
2

√
x2 − 4

sinh
z
√

x2 − 4
2

.
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The Hoggatt-Bicknell-King polynomial of Lucas kind. By the relation
hn(x) = Vn

(
x+
√

x2−4
2 , x−

√
x2−4
2

)
, we have

∞

∑
n=0

1
n!

hn(x)zn = 2e
xz
2 cosh

z
√

x2 − 4
2

.

The Jacobsthal polynomials. Since Jn(x) =Un

(
1+
√

8x+1
2 , 1−

√
8x+1
2

)
, we have

∞

∑
n=0

1
n!

Jn(x)zn =
2e

z
2

√
8x + 1

sinh
z
√

8x + 1
2

.

The Morgan-Voyce polynomials. Since Bn−1(x) = gn(x + 2) and g0(x) = 0,
as for Chebysev polynomials of the second kind, one obtains

∞

∑
n=0

1
n!

Bn(x)zn =
x+
√

x2−4
2 e

x+
√

x2−4
2 z − x−

√
x2−4
2 e

x−
√

x2−4
2 z

√
x2 − 4

=
e

xz
2

√
x2 − 4

(
x sinh

z
√

x2 − 4
2

+
√

x2 − 4cosh
z
√

x2 − 4
2

)
.

The Brahmagupta polynomials. For the integer parameter t > 0 we have
xn(x,y) = 1

2 Vn

(
x + y

√
t, x− y

√
t
)

, yn(x,y) = yUn

(
x + y

√
t, x− y

√
t
)

, so

∞

∑
n=0

1
n!

xn(x,y)zn = exz coshyz
√

t.

∞

∑
n=0

1
n!

yn(x,y)zn =
exz
√

t
sinhyz

√
t.

Substituting x = 1 in the formulae for the exponential generating func-
tions for Fibonacci, Lucas, Pell and Lucas Pell polynomials, we obtain

∞

∑
n=0

1
n!

Fnzn =
2e

z
2
√

5
sinh

z
√

5
2

;

∞

∑
n=0

1
n!

Lnzn = 2e
z
2 cosh

z
√

5
2

;

∞

∑
n=0

1
n!

Pnzn =
2ez
√

2
sinh z

√
2;

∞

∑
n=0

1
n!

Qnzn = 2ez cosh z
√

2.
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6.5 The integral representation of classical sequences

We begin with the integral representation of Un(x,y), where x,y are nonzero
real numbers with x 6= y. Assume that R < min

{
1
|x| ,

1
|y|

}
. The ordinary gen-

erating function of Un(x,y) is given in formula (6.67) as

∞

∑
n=0

Un(x,y)zn =
1

x− y

∞

∑
n=0

(
1

1− xz
− 1

1− yz

)
.

The power series in the left hand side is convergent for |z|< R, since |xz|< 1
and |yz| < 1. Applying formula (5.7) we obtain

Un(x,y) =

∫ 2π
0

[
cosnt−i sinnt

1−xR(cos t+i sin t) −
cosnt−i sinnt

1−yR(cos t+i sin t)

]
dt

2π(x− y)Rn .

In order to calculate the first expression in the integral, we have

cosnt− i sinnt
1− xR(cos t + i sin t)

=
(cosnt− i sinnt) [1− xR(cos t− i sin t)]

x2R2 + 1− 2xRcos t

=
cosnt− i sinnt− xR [cos(n + 1)t− i sin(n + 1)t]

x2R2 + 1− 2xRcos t
,

and similarly

cosnt− i sinnt
1− yR(cos t + i sin t)

=
(cosnt− i sinnt) [1− yR(cos t− i sin t)]

y2R2 + 1− 2xRcos t

=
cosnt− i sinnt− yR [cos(n + 1)t− i sin(n + 1)t]

y2R2 + 1− 2yRcos t
.

Because Un(x,y) is a real number, it follows that

Un(x,y) =

∫ 2π
0

[
cosnt−xRcos(n+1)t

x2R2+1−2xRcos t −
cosnt−yRcos(n+1)t

y2R2+1−2yRcos t

]
dt

2π(x− y)Rn .

After simple computations we obtain the integral formula

Un(x,y) =
1

2πRn−1

∫ 2π

0

xyR2 cos(n + 1)t
a + bcos t + ccos2 t

dt

− 1
2πRn−1

∫ 2π

0

(x + y)Rcosnt
a + bcos t + ccos2 t

dt

+
1

2πRn−1

∫ 2π

0

cos(n− 1)t
a + bcos t + ccos2 t

dt, (6.85)



6.5 The integral representation of classical sequences 169

where the parameters a, b, c are given by

a = a(x,y, R) = (xy)2R4 +
(

x2 + y2
)

R2 + 1,

b = b(x,y, R) = −2(x + y)(xyR2 + 1)R, (6.86)

c = c(x,y, R) = 4xyR2.

Similarly, the ordinary generating function of Vn(x,y) is given by

∞

∑
n=0

Vn(x,y)zn =
1

1− xz
+

1
1− yz

.

Apllying formula (5.7) it follows that

Vn(x,y) =
1

2πRn

∫ 2π

0

[
cosnt− xRcos(n + 1)t

x2R2 + 1− 2xRcos t
+

cosnt− yRcos(n + 1)t
y2R2 + 1− 2yRcos t

]
dt,

hence if a,b, c are defined by (6.86) we obtain

Vn(x,y) =
1

2πRn

∫ 2π

0

2xyR2 cos(n + 2)t
a + bcos t + ccos2 t

dt

− 1
2πRn

∫ 2π

0

(x + y)
(
xyR2 + 2

)
Rcos(n + 1)t

a + bcos t + ccos2 t
dt

+
1

2πRn

∫ 2π

0

[
(x + y)2 R2 + 2

]
cosnt

a + bcos t + ccos2 t
dt

− 1
2πRn

∫ 2π

0

(x + y)Rcos(n− 1)t
a + bcos t + ccos2 t

dt. (6.87)

Remark. Considering the integral

Ik = Ik(x,y, R) =
∫ 2π

0

coskt
a + bcos t + ccos2 t

dt,

formula (6.85) shows that Un(x,y) is a linear combination of the integrals
In+1, In and In−1, i.e., we have

Un(x,y) =
xy

2πRn−3 In+1 −
x + y

2πRn−2 In +
1

2πRn−1 In−1.

Similarly, from (6.87), we obtain Vn(x,y) as the linear combination

Vn(x,y) =
xy

πRn−2 In+2 −
(x + y)

(
xyR2 + 2

)
2πRn−1 In+1

+
(x + y)2 R2 + 2

2πRn In −
x + y

2πRn−1 In−1.
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Integral formula for Fibonacci numbers

Because Fn = Un

(
1+
√

5
2 , 1−

√
5

2

)
, for Fibonacci numbers we have x + y = 1

and xy = −1, therefore

Fn =
1

2πRn−1

∫ 2π

0

−R2 cos(n + 1)t− Rcosnt + cos(n− 1)t
R4 + 3R2 + 1 + 2(R3 − R)cos t− 4R2 cos2 t

dt, (6.88)

for every positive real number R < min
{

2
1+
√

5
, 2√

5−1

}
= 2

1+
√

5
=
√

5−1
2 .

Using the notation

Ik = Ik

(
1 +
√

5
2

,
1−
√

5
2

, R

)

=
∫ 2π

0

coskt
R4 + 3R2 + 1 + 2(R3 − R)cos t− 4R2 cos2 t

dt,

this can be further written as

Fn = − 1
2πRn−3 In+1 −

1
2πRn−2 In +

1
2πRn−1 In−1.

Integral formula for Lucas numbers

Because Ln = Vn

(
1+
√

5
2 , 1−

√
5

2

)
, and x2 + y2 = 3, we obtain the following

integral formula for Lucas numbers

Ln =− 1
πRn−2

∫ 2π

0

cos(n + 2)t
R4 + 3R2 + 1 + 2(R3 − R)cos t− 4R2 cos2 t

dt

+
R2 − 2

2πRn−1

∫ 2π

0

cos(n + 1)t
R4 + 3R2 + 1 + 2(R3 − R)cos t− 4R2 cos2 t

dt

+
R2 + 2
2πRn

∫ 2π

0

cosnt
R4 + 3R2 + 1 + 2(R3 − R)cos t− 4R2 cos2 t

dt

− 1
2πRn−1

∫ 2π

0

cos(n− 1)t
R4 + 3R2 + 1 + 2(R3 − R)cos t− 4R2 cos2 t

dt, (6.89)

for every positive real number R < min
{

2
1+
√

5
, 2√

5−1

}
= 2

1+
√

5
=
√

5−1
2 .

With the Ik’s used for Fibonacci numbers, for Lucas numbers we have

Ln = − 1
πRn−2 In+2 +

R2 − 2
2πRn−1 In+1 +

R2 + 2
2πRn In −

1
2πRn−1 In−1.
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Integral formula for Pell numbers

Because Pn = Un

(
1 +
√

2,1−
√

2
)

, for Pell numbers we have x + y = 2 and
xy = −1, therefore

Pn =
1

2πRn−1

∫ 2π

0

−R2 cos(n + 1)t− 2Rcosnt + cos(n− 1)t
R4 + 6R2 + 1 + 4(R3 − R)cos t− 4R2 cos2 t

dt, (6.90)

for every positive real number R < min
{

1
1+
√

2
, 1√

2−1

}
=
√

2− 1.
Using the notation

Ik = Ik

(
1 +
√

2,1−
√

2, R
)

=
∫ 2π

0

coskt
R4 + 6R2 + 1 + 4(R3 − R)cos t− 4R2 cos2 t

dt,

we have

Pn = − 1
2πRn−3 In+1 −

1
πRn−2 In +

1
2πRn−1 In−1.

Integral formula for Pell-Lucas numbers

As Qn = Vn

(
1 +
√

2,1−
√

2
)

and x2 + y2 = 6, for Pell-Lucas numbers we
get the following formula

Qn =− 1
πRn−2

∫ 2π

0

cos(n + 2)t
R4 + 6R2 + 1 + 4(R3 − R)cos t− 4R2 cos2 t

dt

+
R2 − 2
πRn−1

∫ 2π

0

cos(n + 1)t
R4 + 6R2 + 1 + 4(R3 − R)cos t− 4R2 cos2 t

dt

+
2R2 + 1

πRn

∫ 2π

0

cosnt
R4 + 6R2 + 1 + 4(R3 − R)cos t− 4R2 cos2 t

dt

− 1
πRn−1

∫ 2π

0

cos(n− 1)t
R4 + 6R2 + 1 + 4(R3 − R)cos t− 4R2 cos2 t

dt, (6.91)

for every positive real number R < min
{

1
1+
√

2
, 1√

2−1

}
=
√

2− 1.
With the Ik’s used for Pell numbers, for Pell-Lucas numbers we have

Qn = − 1
πRn−2 In+2 +

R2 − 2
πRn−1 In+1 +

2R2 + 1
πRn In −

1
πRn−1 In−1.
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Chapter 7
Polynomials in Multiple Variables

Polynomials in several variables with coefficients in a field K can be defined
inductively. To be precise, a polynomial f (X,Y) in two variables X,Y is a
polynomial in Y with coefficients in K[X]. That means

f (X,Y) =
n

∑
j=0

f j(X)Y j,

where f j(X) ∈ K[X]. If we write

f j(X) =
n(j)

∑
i=0

aijXi

we see that f (X,Y) can be expressed as

f (X,Y) =
n

∑
i,j=0

aijXiY j,

where n = max{n(j)}. We will write f (X,Y) = ∑ij aijXiY j and we always
assume that this sum is finite. We denote by K[X,Y]the set of polynomials in
variables X,Y with coefficients in K. It is clear that we can perform addition
and multiplication of polynomials in two variables such that K[X,Y] is a
ring. Nevertheless, the Euclidean division theorem is not valid unless the
divisor is a monic polynomial in one of the variables. For example:

XnY− Xn−2Y2 + X2Y2 + X =
(

X2 −Y
)(

Xn−2Y + Y2
)
+ X + Y3,

when we divide the polynomial by X2 −Y. But, dividing to Y− X2 we get:

XnY− Xn−2Y2 + X2Y2 + X =
(

Y− X2
)(
−Xn−2Y + X2Y + X4

)
+ X6 + X.
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Assume that the ring of polynomials in n− 1 variables K[X1, . . . , Xn−1] is
defined. Then, by induction we define

K[X1, . . . , Xn] = K[X1, . . . , Xn−1][Xn].

Clearly, a polynomial in the variables X1, . . . , Xn−1, Xn is a polynomial in the
variable Xn with coefficients polynomials in the variables X1, . . . , Xn−1. Such
a polynomial is commonly denoted as F(X1, . . . , Xn). Also, a polynomial in
n variables F(X1, . . . , Xn) can be expressed as a finite formal sum

F(X1, . . . , Xn) = ∑
I=(i1,...,in)

aiX
i1
1 . . . Xin

n ,

where I = (i1, . . . , in) is an ordered sequence of non negative integers and aI
are constants from one of the number sets Z,Q,R,C or from Fp.

The product aI Xi1
1 . . . Xin

n is called a monomial. The degree of the mono-
mial aI Xi1

1 . . . Xin
n is i1 + · · · + in. The degree of a polynomial is the highest

degree of its non zero monomials.
To be precise, we defined the degree of F by

deg(F) = max
{

deg(Xi1
1 . . . Xin

n ) : ai1 ...in 6= 0
}

.

This maximum may be attained in more monomials. For example, the
polynomial F = X3Y − 2YZ5 + 3X3Z has three variables X, Y and Z, and
the degree deg(F) = 6.

A polynomial F(X1, . . . , Xn) is homogeneous if all its non zero monomials
have the same degree. A homogeneous polynomial of degree 1 is called a
linear form and can be written as a1X1 + · · ·+ anXn, where a1, . . . , an ∈ K.

A general homogeneous polynomial of degree 2 is called a quadratic
form and can be written as

a1X2
1 + · · ·+ anX2

n + a12X1X2 + a13X1X3 + · · ·+ an−1,nXn−1Xn,

where ai, ai,j ∈ K for all i, j ∈ {0,1, . . . ,n}.

The following properties hold for homogeneous polynomials.

1) The sum of two homogeneous polynomials of the same degree is also a
homogeneous polynomial.

2) The product of two homogeneous polynomial is also a homogeneous
polynomial.

3) Let f and g be two homogeneous polynomials with f divisible by g. Then,
the quotient of f by g is also a homogeneous polynomial.
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7.1 Symmetric polynomials

The polynomial F(X1, . . . , Xn) is said to be symmetric if for any permutation
s = (s1, . . . , sn) of the set {1,2, . . . ,n} one has F(X1, . . . , Xn) = F(Xs1 , . . . , Xsn).

For example, the polynomial F = X2Y + XY2 +Y2Z +YZ2 + Z2X + ZX2

is a symmetric polynomial in three variables. For all k ≥ 1, the polynomials
Pk(X1, . . . , Xn) = Xk

1 + · · ·+ Xk
n are symmetric in n variables are symmetric.

Clearly, the polynomial G = X2Y − XY2 + Y2Z − YZ2 + Z2X − ZX2, in
three variables, is not symmetric.

Let us consider the following important symmetric polynomials

S1(X1, . . . , Xn) = X1 + · · ·+ Xn

· · ·
Sk(X1, . . . , Xn) = ∑

i1,...,ik

Xi1 · · ·Xik

· · ·
Sn(X1, . . . , Xn) = X1X2 . . . Xn,

where the sum in the definition of the term Sk is taken over all k element
subsets {i1, . . . , ik} of the set {1,2, . . . ,n}. By extension for k > n, we define
Sk = 0 and also S0 = 1. These polynomials are generally called the funda-
mental symmetric polynomials in n variables. We will use them throughout
the book and for simplicity we denote them by S1, . . . ,Sn.

Some properties involving symmetric polynomials in the same variables,
analogous to the properties 1) – 3) listed for homogeneous polynomials.

1) The sum of two symmetric polynomials is also a symmetric polynomial.
2) The product of two symmetric polynomials is also a symmetric polyno-

mial.
3) Let f and g be two symmetric polynomials such that f is divisible by g.

Then, the quotient is also a symmetric polynomial.

In other words, an algebraic combination of symmetric polynomials is a
symmetric polynomial. In numerous applications, the polynomials involved
are symmetric and homogeneous, therefore one can make use of the three
properties listed above. We now present some illustrative examples.

Example 7.1. Factorize the polynomial

P(a,b, c) = (b− c)(−2a+ b+ c)2 +(c− a)(a− 2b+ c)2 +(a− b)(a+ b− 2c)2.

Solution. Clearly, P is a symmetric and homogeneous polynomial of degree
3 in a,b, c. Note that P(a, a, c) = 0, hence P is divisible by a − b. Because of
the symmetry, P is also divisible by b− c and by c− a.
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It follows that

P(a,b, c) = k(a− b)(b− c)(c− a),

for some constant k. Taking a = 0, b = 1, c = 2, we get P(0,1,2) = 2k, hence
2k = −18. It follows k = −9, so

P(a,b, c) = −9(a− b)(b− c)(c− a).

A similar example problem is the following.

Example 7.2. Factorize the expression

E(a,b, c) = (a− b)(a + b)4 + (b− c)(b + c)4 + (c− a)(c + a)4.

Solution. It is clear that E is a symmetric and homogeneous polynomial in
a,b, c of degree 5. From E(a, a, c) = 0 it follows that E is divisible by a− b and
because the symmetry, E is also divisible by b− c and by c− a.

We now get the expression

E = (a− b)(b− c)(c− a) · G,

where G is a symmetric and homogeneous polynomial of degree 2 in he
variables a,b, c. We have

G = k1

(
a2 + b2 + c2

)
+ k2 (ab + bc + ca) ,

for some constants k1 and k2. Therefore

E = (a− b)(b− c)(c− a)
[
k1

(
a2 + b2 + c2

)
+ k2 (ab + bc + ca)

]
.

From the relations

E(0,1,2) = 2(5k1 + 2k2), E(−1,0,1) = 2(2k1 − k2),

one obtains the system {
5k1 + 2k2 = −25
2k1 − k2 = −1,

from where it follows that k1 = −3 and k2 = −5. We get

E(a,b, c) = −(a− b)(b− c)(c− a)
[
3
(

a2 + b2 + c2
)
+ 5 (ab + bc + ca)

]
.
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Let us see how these ideas can be used to prove an identity of cyclic form.

Example 7.3. Prove the identity

∑
cyc

x4(y− z) = −(x− y)(y− z)(z− x)
(

x2 + y2 + z2 + xy + yz + zx
)

.

Solution. We proceed as in previous problem in order to factor

F(x,y,z) = ∑
cyc

x4(y− z).

It is clear that F is a symmetric and homogeneous polynomial in x,y,z of de-
gree 5. From F(x, x,z) = 0 it follows that F is divisible by x− y, and because
the symmetry it is also divisible by y− z and z− x. We get

F = (x− y)(y− z)(z− x) · H,

where H is a symmetric and homogeneous polynomial in x,y,z of degree 2,
given by the formula

H = k1

(
x2 + y2 + z2

)
+ k2 (xy + yz + zx) ,

where k1 and k2 are constants to be determined.

From the relations F(0,1,2) = 2(5k1 + 2k2) and F(−1,0,1) = 2(2k1 − k2),
and we obtain the system of equations{

5k1 + 2k2 = −7
2k1 − k2 = −1,

hence k1 = k2 = −1, and the conclusion follows.

Second solution. If we provide the substitutions

x = b + c, y = c + a, z = a + b,

then the left-hand side of the identity is

(a− b)(a + b)4 + (b− c)(b + c)4 + (c− a)(c + a)4.

Now, we replace x,y,z in the right-hand side and get

−(a− b)(b− c)(c− a)
[
3
(

a2 + b2 + c2
)
+ 5 (ab + bc + ca)

]
.

The result now follows from the previous example.
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Example 7.4. Prove the identity

∑
cyc

(y− z)(−x + y + z)3 = −4(x− y)(y− z)(z− x) (x + y + z) .

Solution. Consider the expression

E(x,y,z) = ∑
cyc

(y− z) (−x + y + z)3

and note that E(x, x,z) = 0. It follows that E is divisible by x− y, and because
the symmetry, it is also divisible by y− z and z− x. Taking into account that
E is a symmetric and homogeneous polynomial in x,y,z of degree 2, we have
the formula

E = (x− y)(y− z)(z− x) · F,

where F is polynomial in x,y,z of degree 1, both symmetric and homoge-
neous, hence F = k (x + y + z), for some constant k. From F(0,1,2) = 6k, we
get −24 = 6k, hence k = −4 and we are done.

Example 7.5. Factorize the expression

P(x,y,z) = (x− y)5 + (y− z)5 + (z− x)5.

Solution. We have P(x, x,z) = 0, P(x,y, x) = 0 and P(x,y,y) = 0, hence P is
divisible by (x− y)(y− z)(z− x). We get

P = (x− y)(y− z)(z− x) ·Q,

where Q is a homogeneous polynomial of degree 2 in x,y,z, hence

Q = k1

(
x2 + y2 + z2

)
+ k2 (xy + yz + zx) ,

where the constants k1 and k2 must be determined.

From the relations P(0,1,2) = 2(5k1 + 2k2) and P(−1,0,1) = 2(2k1 − k2)
we obtain the system of equations{

5k1 + 2k2 = 15
2k1 − k2 = 15,

hence k1 = 5 and k2 = −5. It follows the factorization

P(x,y,z) = 5(x− y)(y− z)(z− x)
(

x2 + y2 + z2 − xy− yz− zx
)

.
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Example 7.6. Factorize the expression

f (x,y,z) = (x + y + z)3 − (−x + y + z)3 − (x− y + z)3 − (x + y− z)3.

Solution. Clearly, f is a symmetric and homogeneous polynomial of degree
3 in x,y,z. Note that f (0,y,z) = 0, hence f is divisible by x. Also, we have
f (x,0,z) = f (x,y,0) = 0, hence f is divisible by y and by z.

It follows that f is divisible by xyz and since deg( f ) = 3, we get f = kxyz,
for some constant k. In order to determine k, observe that f (1,1,1) = k, hence
k = 24. Finally, f (x,y,z) = 24xyz.

Example 7.7. Factorize

g(x,y,z) = (x + y + z)4 − (x + y)4 − (y + z)4 − (z + x)4 + (x4 + y4 + z4).

Solution. The polynomial g is symmetric in x,y,z and deg(g) = 4. We have

g(0,y,z) = g(x,0,z) = g(x,y,0) = 0,

hence g is divisible by xyz. It follows that g = xyz · h, where h is a symmetric
polynomial in x,y,z of degree 1, that is h = k (x + y + z) for some constant k.
We get the factorization

g = kxyz (x + y + z) .

In order to find the constant k we set x = y = z = 1 and obtain g(1,1,1) = 3k,
hence 34 − 3 · 24 + 3 = 3k. It follows k = 27− 16 + 1 = 12, therefore

g = 12xyz (x + y + z) .

Example 7.8. Factorize

h(x,y,z) = (x + y + z)5 − (−x + y + z)5 − (x− y + z)5 − (x + y− z)5.

Solution. It is clear that h is a symmetric and homogeneous polynomial in
x,y,z of degree 5. From

h(0,y,z) = h(x,0,z) = h(x,y,0) = 0,

it follows that h is divisible by xyz, hence h = xyz · g, where g is a symmetric
and homogeneous polynomial of degree 2. We have

g = k1

(
x2 + y2 + z2

)
+ k2 (xy + yz + zx) ,

for some constants k1 and k2. Therefore
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h = xyz
[
k1

(
x2 + y2 + z2

)
+ k2 (xy + yz + zx)

]
.

From the relation

h(1,1,1) = 3(k1 + k2), h(1,2,−1) = −2(6k1 − k2),

it follows the system {
k1 + k2 = 80
6k1 − k2 = 6 · 80.

We get k1 = 80 and k2 = 0, hence

h = 80xyz
(

x2 + y2 + z2
)

.

Example 7.9. Factorize

f (x,y,z) = (x + y + z)5 − x5 − y5 − z5.

Solution. The polynomial f is symmetric and homogeneous in x,y,z and
deg( f ) = 5. We have

f (x,−x,z) = f (x,y,−x) = f (x,y,−y) = 0,

hence f is divisible by (x + y)(y + z)(z + x). It follows that

f = (x + y)(y + z)(z + x)g,

where g is a degree 2 polynomial in x,y,z, symmetric and homogeneous,
i.e.,

g = k1

(
x2 + y2 + z2

)
+ k2 (xy + yz + zx) ,

for some constants k1 and k2, hence

f = (x + y)(y + z)(z + x)
[
k1

(
x2 + y2 + z2

)
+ k2 (xy + yz + zx)

]
.

From the relations f (1,1,1) = 24(k1 + k2), f (0,1,2) = 6(5k1 + 2k2), we get{
k1 + k2 = 10
5k1 + 2k2 = 35,

hence k1 = k2 = 5. We get

f = 5(x + y)(y + z)(z + x)
(

x2 + y2 + z2 + xy + yz + zx
)

.
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Example 7.10. Factorize

E(a,b, c) = a4
(

b2 − c2
)
+ b4

(
c2 − a2

)
+ c4

(
a2 − b2

)
.

Solution. Denote a2 = x, b2 = y, c2 = z and consider the symmetric and
homogeneous polynomial of degree 3

E(x,y,z) = x2(y− z) + y2(z− x) + z2(x− y).

It is clear that

E1(x, x,z) = E1(x,y, x) = E1(x,y,y) = 0,

hence E1 is divisible by (x− y)(y− z)(z− x). It follows

E1(x,y,z) = k(x− y)(y− z)(z− x),

for some constant k. We have E1(0,1,2) = 2k, that is −2 = 2k, hence k = −1.
We get the factorization

E(a,b, c) = −
(

a2 − b2
)(

b2 − c2
)(

c2 − a2
)

.

We now present a result with deep implications in various areas of math-
ematics.

Theorem 7.1 (Fundamental theorem of symmetric polynomials). For every
symmetric polynomial F(X1, . . . , Xn) there exists a polynomial G(X1, . . . , Xn) such
that F(X1, . . . , Xn) = G(S1, . . . ,Sn). Moreover, the polynomial G is unique.

Proof. The proof of this theorem is by double induction. One induction is
on the number of variables n and the second on the degree of the polynomial
F. The result holds trivially when n = 1. Assume the conclusion holds for all
symmetric polynomials in n− 1 variables. Using induction, we are going to
prove that it also holds for any symmetric polynomial F in n variables.

Now we induct on deg F, the degree of the polynomial F. It is not hard to
verify that the conclusion follows if deg F ∈ {0,1}. Assume that the conclu-
sion holds for all polynomials in at most n variables whose degree is strictly
less than that of F.

Define the polynomial in n− 1 variables

g(X1, . . . , Xn−1) = F(X1, . . . , Xn−1, Xn).

The polynomial g is symmetric, because F is. Using the hypothesis of the
induction on n, we deduce that there exists h such that

g(X1, X2, . . . , Xn−1) = h(X1 + X2 + · · ·+ Xn−1, . . . , X1X2 . . . Xn).
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We now define the polynomial H ∈ R[X1, . . . , Xn] by

H(X1, X2, . . . , Xn) = F(X1, X2, . . . , Xn)− h(S1,S2, . . . ,Sn−1),

where Si, i = 1, . . . ,n − 1 are the fundamental symmetric polynomials in n
variables. Note that H is symmetric. Moreover, as H(X1, , X2, . . . , Xn−1,0) = 0
we deduce that Xn | H(X1, X2, . . . , Xn). By symmetry it follows that we have
X1X2 . . . Xn | H(X1, X2, . . . , Xn). Now, observe that the polynomial

H(X1, X2, . . . , Xn)

X1X2 . . . Xn

is symmetric and

deg
(

H(X1, X2, . . . , Xn)

X1X2 . . . Xn

)
< deg F.

Using the hypothesis of the induction on deg F, it follows that H(X1,X2,...,Xn)
X1X2 ...Xn

can be written as a polynomial expression in the fundamental symmetric
polynomials S1,S2, . . . ,Sn. Now the conclusion follows easily for F and both
inductions are complete. �

For example, we can write the expressions

S2
1 − 2S2 = X2

1 + · · ·+ X2
n

S1S2 − 3S3 = (X + Y + Z)(XY + YZ + ZX)− 3XYZ

= X2Y + XY2 + Y2Z + YZ2 + Z2X + ZX2.

The fundamental theorem of symmetric polynomials plays an important
role in the theory of algebraic equations. Viéta formulas can be obtained as
follows. Let us consider the polynomial in n + 1 variables

F(Y, X1, . . . , Xn) = (Y + X1) . . . (Y + Xn).

It is clear that

F(Y, X1, . . . , Xn) = Yn + S1Yn−1 + · · ·+ SkYn−k + · · ·+ Sn.

In particular, if a polynomial

f (X) = Xn + a1Xn−1 + · · ·+ an−1X + a0 (7.1)

has the roots x1, . . . , xn, then it splits (over an algebraic closure) as

Xn + a1Xn−1 + · · ·+ an−1X + a0 = (X− x1) . . . (X− xn).

From the equality of polynomials
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f (X) = (X− x1) . . . (X− xn) = Xn − S1(x1, . . . , xn)Xn−1 + · · ·
+ (−1)kSk(x1, . . . , xn)Xn−k + · · ·+ (−1)nSn(x1, . . . , xn),

after identification of coefficients one obtains the following identities:

a1 = −S1(x1, . . . , xn)

. . .

ak = (−1)kSk(x1, . . . , xn)

. . .
an = (−1)nSn(x1, . . . , xn).

These are Viéta formulas. Their meaning is the following: every symmetric
polynomial in the roots x1, . . . , xn of the polynomial (7.1) can be expressed in
terms of the coefficients a1, . . . , an.

Now we present some applications of this important result.

Example 7.11 (Constructing a polynomial from its roots). The polynomial
P(X) = aX3 + bX2 + cX + d (d 6= 0) has the roots x1, x2, x3. Find a polynomial
whose roots are 1/x1,1/x2,1/x3.

Solution. We compute Viète sums for the roots 1/x1,1/x2,1/x3 to get

1
x1

+
1
x2

+
1
x3

= −c/d,

1
x1x2

+
1

x2x3
+

1
x3x1

= b/d,

1
x1x2x3

= −a/d.

Hence, such a polynomial is X3 + c
d X2 + b

d X + a
d . We can multiply it by d

to obtain the polynomial dX3 + cX2 + bX + a. This is called the reciprocal
polynomial of aX3 + bX2 + cX + d.

Alternatively, for the example above, one can assume that x is a root of
P(X), that is ax3 + bx2 + cx + d = 0. Since d 6= 0, we get x 6= 0. Then we can
divide by x3 and we obtain a+ b(1/x) + c(1/x)2 + d(1/x)3. This shows that
1/x is a root of dX3 + cX2 + bX + a.

Definition 7.1. The polynomial anXn + an−1Xn−1 + · · ·+ a1X + a0 is called
a reciprocal polynomial if its coefficients satisfy the relations:

an = a0, an−1 = a1, an−2 = a2, and so on.

Such a polynomial has the property that if x is a root, then 1/x is also a
root. That is, its roots which are not ±1 can be paired in to {x,1/x}. Here is
an application of this property.
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Example 7.12 (Roots of a reciprocal polynomial). Find the roots of the poly-
nomial f (X) = 6X4 + 5X3 − 38X2 + 5X + 6.

Solution. This is a reciprocal polynomial, so we can denote its roots by
x,1/x,y,1/y. Using Vieta relations we obtain the equalities:

x + y +
1
x
+

1
y
= −5

6
,

xy +
x
y
+

y
x
+

1
xy

+ 2 = −19
3

.

The second equality can be written as(
x +

1
x

)(
y +

1
y

)
= −25

3
.

Denote x + 1/x = u and y + 1/y = v. Then, from Vieta relations, we get the
system: u + v = − 5

6 ; uv = − 25
3 . Solving the system one obtains u = 5

2 and
v = − 10

3 . Solving the equations x + 1
x = 5

2 and y + 1/y = − 10
3 one obtains

the solutions x1 = 2, x2 = − 1
2 and y1 = −3, y2 = − 1

3 . So, the roots of f (X)

are 2,−3, 1
2 ,− 1

3 .

Example 7.13. Find the roots of the polynomial f (X) = X4 + X3 + X2 + X + 1.

Solution. This is a reciprocal polynomial. Let z ∈C be a root. By the relation
z4 + z3 + z2 + z + 1 = 0, and because z 6= 0, we have

z2 + z + 1 +
1
z
+

1
z2 = 0.

By grouping the terms of the sum we obtain(
z +

1
z

)2
+

(
z +

1
z

)
− 1 = 0.

Let denote z + 1/z = y. Then y satisfies the equation y2 + y− 1 = 0. Solving
the quadratic equation one obtains y1,2 =

−1±
√

5
2 . To find z we have to solve

the quadratic equations:

z2 +
1 +
√

5
2

z + 1 = 0,

z2 +
1−
√

5
2

z + 1 = 0.

After solving them one obtains the following four solutions
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z1 =

√
5− 1
4

+
i
2

√
5 +
√

5
2

; z2 =

√
5− 1
4

− i
2

√
5 +
√

5
2

z3 = −
√

5 + 1
4

+
i
2

√
5−
√

5
2

; z4 = −
√

5 + 1
4

− i
2

√
5−
√

5
2

.

We know that these roots are zk = cos 2kπ
5 + i sin 2kπ

5 , where k = 1,2,3,4.
Identifying the quadrants we obtain, for example:

cos
2π

5
=

√
5− 1
4

and sin
2π

5
=

√
5 +
√

5
8

7.1.1 Newton’s formulas

Let Pk(x1, . . . , xn) = xk
1 + xk

2 + · · ·+ xk
n, k = 0,1, . . ., be the sum of power k of

the roots x1, x2, . . . , xn of polynomial f . It is clear that Pk is a homogeneous
symmetric polynomial of degree k in variables x1, x2, . . . , xn hence, according
to the fundamental theorem of symmetric polynomials, Pk can be expressed
as a polynomial of S1,S2, . . . ,Sn, and finally in terms of the coefficients of
polynomial. The problem to express Pk in terms of S1,S2, . . . ,Sn is a difficult
one. First of all we observe that for any j ≥ 0 we have the recursive relation

Pn+j = −
an−1

an
Pn+j−1 −

an−2

an
Pn+j−2 − · · · −

a1

an
Pj+1 −

a0

an
Pj.

This means that we can write successively Pn+1, Pn+2, . . . as linear com-
binations of P0, P1, . . . , Pn−1. In this way the problem is reduce to express
P0, P1, . . . , Pn−1 in terms of S1,S2, . . . ,Sn. To do this we need the following
simple but important result:

Theorem 7.2. Let f be a polynomial with roots x1, x2, . . . , xn. Then, for every x 6=
x1, x2, . . . , xn, the following relation holds:

f ′(x)
f (x)

=
1

x− x1
+

1
x− x2

+ · · ·+ 1
x− xn

.

Proof. One can write the polynomial function induced by f in the form
f (x) = an(x− x1)(x− x2) · · · (x− xn), then the derivative of f is

f ′(x) = an
[
(x− x2) · · · (x− xn) + (x− x1)(x− x3) · · · (x− xn)

+ · · ·+ (x− x1)(x− x2) · · · (x− xn−1)
]

Replacing in f ′(x)
f (x) we get the desired formula. �
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Now we can derive an algorithm in order to express P0, P1, . . . , Pn−1 in
terms of S1,S2, . . . ,Sn. From formula in Theorem 7.2 we have

f ′(x) =
f (x)

x− x1
+

f (x)
x− x2

+ · · ·+ f (x)
x− xn

.

Dividing f by x− xk we get

f (x)
x− xk

=
f (x)− f (xk)

x− xk
= an[xn−1 + (xk − S1)xn−2 + (x2

k − S1xk + S2)xn−3

+ · · ·+ (xn−1
k − S1xn−2

k + S2xn−3
k − · · · − (−1)n−1Sn−1)].

Summing for k = 1,2, . . . ,n it follows that

f ′(x) = an
[
nxn−1 + (P1 − nS1)xn−2 + (P2 − S1P1 + nS2)xn−3 + · · ·

+ (Pn−1 − S1Pn−2 + S2Pn−3 − · · · − (−1)n−1nSn−1)
]
.

But according to Vieta’s relations we have

f ′(x) = an

[
xn−1 − (n− 1)S1xn−2 + (n− 2)S2xn−3 − · · ·

]
.

Identifying coefficients in the above we get P1 − nS1 = −(n − 1)S1, then
P2 − S1P1 + nS2 = (n− 2)S2, and P3 − S1P2 + S2P1 − nS3 = −(n− 3)S3, . . ..
Successively, these recover Newton’s formulas

P1 = S1

P2 − S1P1 = −2S2

P3 − S1P2 + S2P1 = 3S3

· · ·

which provide a way to express P0, P1, . . . , Pn−1 in terms of S1,S2, . . . ,Sn:

P0 = n
P1 = S1

P2 = S2
1 − 2S2

P3 = S3
1 − 3S1S2 + 3S3

· · ·

Here we extend the newton relations to powers sums Pk, where k > 0 can be
even larger than the number of variables n.

In other words, for any n variables X1, . . . , Xn and any k > 0, Newton
formulas relate the polynomials S1, . . . ,Sn and P1, P2, . . . , Pk by the relations

Pk − S1Pk−1 + S2Pk−2 − · · ·+ (−1)k−1Sk−1P1 + (−1)kkSk = 0. (7.2)
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There are many proofs of Newton’s identities. One using calculus and the
logarithmic derivative can be found in [94], while a combinatorial proof is
given in [236]. Here we present a simple, purely algebraic proof.

Let x1, . . . , xn ∈C be arbitrary complex numbers. It is enough to show that
the equality (7.2) when we evaluate the polynomials in x1, . . . , xn. We start by
first proving the case k = n and then we will derive the general formulas.

Suppose f ∈ C[X] is a monic polynomial with roots x1, . . . , xn. Recall that

f (X) = Xn +
n

∑
i=1

(−1)iSi(x1, . . . , xn)Xn−i.

Evaluating f at xj for j = 1,2, . . . ,n we get

xn
j +

n

∑
i=1

(−1)iSi(x1, . . . , xn)xn−i
j = 0.

Summing over all j = 1, . . . ,n, and using P0 = n we obtain that

Pn(x1, . . . , xn) +
n

∑
i=1

(−1)iSi(x1, . . . , xn)Pn−i(x1, . . . , xn) = 0.

As this is true for any x1, . . . , xn ∈ C, we get that (7.2) holds in the particular
case n = k. Suppose now that k > n and let x1, x2, . . . , xn, xn+1, . . . , xk ∈ C be
arbitrary. Consider f ∈ C[X] the monic polinomial having roots x1, . . . , xn
and g ∈ C[X] the monic polynomial with roots x1, x2, . . . , xk. More precisely,

g(X) = f (X) ·
k

∏
i=n+1

(X− xi).

We run now apply the previous argument for symmetric sums in k variables
to the polynomial g and then set xn+1 = xn+2 = · · · = xk = 0.

The desired identity (7.2) follows, since for every i ∈ {1,2, . . . ,k} we have

Si(x1, . . . , xk) = ∑
j1<j2<···<ji

xj1 xj2 . . . xji ,

any term in which xj appears for j > n becomes 0.
We just need to justify formula (7.2) when k < n. Consider the polynomial

F(X1, . . . , Xn) = Pk − S1Pk−1 + S2Pk−2 − · · ·+ (−1)k−1Sk−1P1 + (−1)kkSk.

As F is a homogeneous polynomial of degree k, it can be written as

F(X1, . . . , Xn) = ∑
a1,a2,...,an

c(a1, a2, . . . , an)Xa1
1 Xa2

2 . . . Xan
n ,
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where a1, . . . , an are non-negative integers such that a1 + a2 + · · ·+ an = k.

Each monomial in F does not contain more than k variables. Fix one
monomial c(a1, a2, . . . , an)Xa1

1 Xa2
2 . . . Xan

n . By substituting 0 for n− k variables
in F, we can make sure that the monomial c(a1, a2, . . . , an)Xa1

1 Xa2
2 . . . Xan

n sur-
vives. But the same monomial can be found in the polynomial arising from a
version of Newton’s identities for k variables, therefore it must be 0. We can
repeat the procedure, i.e. substituting 0 for (possibly other) n− k variables
to show that the polynomial F is identically zero. This concludes the proof
of the Newton’s identities.

By fixing the fundamental symmetric polynomials Si, the Newton iden-
tities (7.2) can be regarded as linear equations in the unknowns Pj and one
can use linear algebra to express

Pk =

∣∣∣∣∣∣∣∣∣∣∣

S1 1 0 . . . 0
2S2 S1 1 . . . 0
3S3 S2 S1 . . . 0

...
...

...
. . .

...
kSk Sk−1 Sk−2 . . . S1

∣∣∣∣∣∣∣∣∣∣∣
, for any k ∈N∗. (7.3)

Similarly, by fixing the Pj, one can find Si in terms of Pj as follows

Sk =
1
k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

P1 1 0 . . . 0 0
P2 P1 2 . . . 0
P3 P2 P1 . . . 0 0
...

...
...

. . .
...

Pk−1 Pk−2 Pk−3 . . . P1 k− 1
Pk Pk−1 Pk−2 . . . P2 P1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, for any k ∈N∗. (7.4)

The following result gives an explicit formula for the symmetric polyno-
mials Sk in terms of the symmetric power sums Pj, j = 0,1,2, . . .

Theorem 7.3. The following formula holds

Sk = (−1)k ∑
l1+2l2+...+klk=k

(−1)l1+...+lk
Pl1

1
1l1 l1!

Pl2
2

2l2 l2!
. . .

Plk
k

klk lk!
. (7.5)

Proof. Suppose x1, x2, . . . , xn are the variables of the polynomials S1, . . . ,Sn.
Adding an extra variable z, we observe the following identities of formal
power series in z:
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n

∑
k=0

(−1)kSkzk =
n

∏
j=1

(1− xjzj) = e∑n
j=1 ln(1−xjzj)

= e
−

n
∑

j=1

∞
∑

m=1

xm
j zm

m

= e
−

∞
∑

s=1

Pszs
s

=
∞

∏
s=1

e−
Pszs

s =
∞

∏
s=1

∞

∑
t=0

1
t!

(
−Pszs

s

)t

=
∞

∑
k=0

 ∑
l1+2l2+...=k

(
− P1

1

)l1

l1!
·

(
− P2

2

)l2

l2!
. . .

 zk

=
∞

∑
k=0

(
∑

l1+2l2+...+klk=k
(−1)l1+...+lk

Pl1
1

1l1 l1!
Pl2

2
2l2 l2!

. . .
Plk

k
klk lk!

)
zk.

The conclusion follows by identifying the coefficients of zk. �

Remark. By the theorem above it follows that for every k ≥ n + 1 we have

∑
l1+2l2+...+klk=k

(−1)l1+...+lk
Pl1

1
1l1 l1!

Pl2
2

2l2 l2!
. . .

Plk
k

klk lk!
= 0.

Remark. In the proof above, we note that the Diophantine equation

x1 + 2x2 + . . . + kxk = k,

plays a fundamental role. For fixed k ≥ 1, note that the number of non-
negative solutions (x1, x2, . . . , xk) ∈Nk for this equation is exactly p(k), the
number of partitions of k. Note that p(1) = 1, p(2) = 2, p(3) = 3. For k = 4,
the only solutions are given by (0,0,0,1), (1,0,1,0), (0,2,0,0), (2,1,0,0),
(4,0,0,0), so p(4) = 5. In general, the number of solutions p(k) is encoded
as the coefficient of p(k) in the formal power-series expansion of

fk(z) =
k

∏
j=1

∞

∑
m=1

(1 + zj + z2j + . . .) =
k

∏
j=1

1
1− zj for all z such that |z| < 1.

It is easy to deduce now that for every k ≥ 2,

p(k) =
1
k!

f (k)k (0), (7.6)

where f (k)k denotes the k-th derivative of f . Indeed, one could verify that this
formula gives p(4) = 5 and p(5) = 7. However, the formula (7.6) becomes
too complicated to compute the number of partitions p(k) for high values
of k. It is known that the partition function p(k) is notoriously complicated
and no closed form formula for this function is known.



190 7 Polynomials in Multiple Variables

The sequence p(k) is indexed as A000041 in the OEIS [190], starting with
the following terms

1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,490,627,792, . . . .

An asymptotic formula was first discovered by Hardy and Ramanujan and
later improved by Rademacher. This asserts that

p(k) ∼ 1
4k
√

3
eπ
√

2k/3, as k→∞. (7.7)

The theory of modular forms can be applied to reveal some intriguing arith-
metic properties carried by the partition function p(k). An example of this is
that p(5k+ 4)≡ 0 (mod 5) for all k∈N. There is an extremely rich literature
on the subject of partitions. One of the standard references for connections
of p(k) with number theory is the book by Andrews [12].

Example 7.14 (Asian-Pacific 2003). If the roots of the polynomial

P(x) = x8 − 4x7 + 7x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0

are all positive real numbers, find all possible values of a0.

Solution. Let the roots be r1,r2, . . . ,r8. By Vieta’s formulas, we have

S1 = r1 + r2 + · · ·+ r8 = 4 and e2 = 7.

The value of S2 does not seem particularly helpful in the form in which it is
given, so we recall that Newton’s identities give

a8P2 + a7P1 + 2a6 = 0, P2 + (−4)(4) + 2(7) = 0,

so P2 = r2
1 + r2

2 + · · · + r2
8 = 2. It seems that we have run into another

dead end here, unless we recall the well-known Cauchy-Schwarz Inequality,
which states that, for real numbers x1, x2, . . . , xn and y1,y2, . . . ,yn, we have

(x1y1 + x2y2 + · · ·+ xnyn)
2 ≤

(
x2

1 + x2
2 + · · ·+ x2

n

)(
y2

1 + y2
2 + · · ·+ y2

n

)
,

with equality if and only if x1/y1 = x2/y2 = . . . = x8/y8. In this case, we put
x1 = x2 = . . . = x8 = 1 and yi = ri to get

(r1 + r2 + · · ·+ rn)
2 ≤ 8

(
r2

1 + r2
2 + · · ·+ r2

8

)
.

Since equality holds, we must have r1 = r2 = . . . = r8 = 1/2, and thus

a0 = r1r2 · · · r8 =
1

256
.
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Example 7.15. Find all solutions, real or complex, to the system of equations
x + y + z = 3
x2 + y2 + z2 = 3
x3 + y3 + z3 = 3.

Solution. Assume without loss of generality that x,y,z are the roots of a
cubic polynomial with leading coefficient 1. Since S1 = 3, we find a2 = −3.
Hence, we know that the polynomial has the form

f (r) = r3 − 3r2 + a1r + a0.

By Newton’s sums, we have

a3P2 + a2P1 + 2a1 = 0,
(1)(3) + (−3)(3) + 2a1 = 0,

a1 = 3,
a3P3 + a2P2 + a1P1 + 3a0 = 0,

(1)(3) + (−3)(3) + (3)(3) + 3a0 = 0,
a0 = −1.

Thus f (r) = r3− 3r2 + 3r− 1 = (r− 1)3, so the only solution is x = y = z = 1.

Example 7.16. Let x1, x2, x3 be the roots of x3 − x + 1 = 0. Find x10
1 + x10

2 + x10
3 .

Solution. Recall the notation Pk = xk
1 + xk

2 + xk
3, k = 0,1, . . .. We have a1 = 0,

a2 = −1, a3 = −1, and from Newton’s formulas we get

Pk+3 = Pk+1 − Pk, k = 0,1, . . . .

It is clear that P0 = 3, P1 = 0, P2 = 2. Then, applying successively the above
recursion relation, one obtains

P3 = P1 − P0 = −3,
P4 = P2 − P1 = 2,
P5 = P3 − P2 = −5,
P6 = P4 − P3 = 5,
P7 = P5 − P4 = −7,
P8 = P6 − P5 = 10,
P9 = P7 − P6 = −12,
P10 = P8 − P7 = 17,

which is the quantity we are asked for.
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Example 7.17. Find all the values of a ∈ R such that the zeros x1, x2, x3 of the
polynomial x3 − 6x2 + ax + a satisfy

(x1 − 3)3 + (x2 − 3)3 + (x3 − 3)3 = 0.

Solution. We use Newton’s formulas for Pk = xk
1 + xk

2 + xk
3, k = 2,3. Since

x1, x2, x3 are zeros of the given polynomial, we have S1 = 6, S2 = a, S3 =−a,
and therefore

P1 = S1 = 6,

P2 = S2
1 − 2S2 = 36− 2a,

P3 = S3
1 − 3S1S2 + 3S3 = 216− 21a.

Using the binomial theorem we then obtain

0 = (x1 − 3)3 + (x2 − 3)3 + (x3 − 3)3 = s3 − 3s2 · 3 + 3s1 · 32 − 3 · 33

= 216− 21a− 9(36− 2a) + 27 · 6− 81 = −27− 3a,

and therefore a = −9.

Example 7.18 (IMO 1985). Let a,b, c,d be real numbers such that

a + b + c + d = a7 + b7 + c7 + d7 = 0.

Show that a(a + b)(a + c)(a + d) = 0.

Solution. We use the notation Pk(a,b, c,d) = ak + bk + ck + dk for the New-
ton sums and Sk = Sk(a,b, c,d) for the elementary symmetric polynomials in
a,b, c,d, k = 1,2, . . .. We have P1 = S1 = 0. From Newton’s formulas we get
successively:

P2 = S1P1 − 2S2, hence P2 = −2S2,
P3 = S1P2 − S2P1 + 3S3, hence P3 = 3S3,

P4 = S1P3 − S2P2 + S3P1 − 4S4, hence P4 = 2S2
2 − 4S4,

P5 = S1P4 − S2P3 + S3P2 − S4P1, hence P5 = −5S2S3,

P6 = S1P5 − S2P4 + S3P3 − S4P2, hence P6 = −2S4
2 + 6S2S4 + 3S2

3,

P7 = S1P6 − S2P5 + S3P4 − S4P3, hence P7 = S3(7S2
2 − 5S4).

Because P7 = 0, it follows that S3(7S2
2 − 5S4) = 0.

There are two cases: S3 = 0 or 7S2
2 − 5S4 = 0. We have to prove that

a
[

a3 + a2(b + c + d) + a(bc + cd + db) + bcd
]
= 0.
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This is equivalent to

a3(a + b + c + d) = −aS3,

and S3 = 0 gives the result.

Assume that 7S2
2 − 5S4 = 0, that is S2

2 =
5
7

S4. From P4 = 2S2
2 − 4S4 ≥ 0, we

have S2
2 ≥ 2S4, which is in contradiction with S2

2 =
5
7

S4.

Example 7.19. Let the roots of x3 + 2x2 + 3x + 4 = 0 be a,b, c. Find a2 + b2 + c2.

Solution. Recall that

(a + b + c)2 = a2 + b2 + c2 + 2 (ab + bc + ca) .

Then, we get

a2 + b2 + c2 = (a + b + c)2 − 2 (ab + bc + ca) .

By Viete’s formulas, a + b + c = −2 and ab + bc + ca = 3, so that

a2 + b2 + c2 = −2.

Remark. According to Newton’s identities we have

P2 = a1P1 − 2a2 = a2
1 − 2a2 = 4− 2 · 3 = −2.

Example 7.20. Find the sum of the fourth powers of the roots of the equation

7x3 − 21x2 + 9x + 2 = 0.

Solution. First we write the equation as

x3 − 3x2 +
9
7

x +
2
7
= 0.

We have a1 = 3, a2 =
9
7

, a3 = −
2
7

, a4 = 0, and by Newton’s identities we get

P1 = 3,

P2 = 3P1 − 2a2 = 9− 18
7

=
45
7

,

P3 = a1P2 − a2P1 + 3a3 = 3 · 45
7
− 9

7
· 3− 6

7
=

102
7

,

P4 = a1P3 − a2P2 + a3P1 − 4a4 = 3 · 102
7
− 9

7
· 45

7
− 6

7
=

1695
49

.
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Example 7.21 (AIME 2003). The roots of x4 − x3 − x2 − 1 = 0 are a,b, c, and d.
Find p(a) + p(b) + p(c) + p(d), where

p(x) = x6 − x5 − x3 − x2 − x.

Solution. We have

p(a) = a6 − a5 − a3 − a2 − a = a6 − a5 − a4 − a2 + a4 − a3 − a

= a2(a4 − a3 − a2 − 1) + (a4 − a3 − a2 − 1) + a2 − a + 1 = a2 − a + 1,

and similarly

p(b) = b2 − b + 1, p(c) = c2 − c + 1, p(d) = d2 − d + 1.

It follows that

p(a) + p(b) + p(c) + p(d) = ∑ a2 −∑ a + 4.

From Newton’s identities we get

P2 = a1P1 − 2a2 = a2
1 − 2a2 = 1 + 2 = 3,

hence

p(a) + p(b) + p(c) + p(d) = 3− 1 + 4 = 6.

Example 7.22. Let x1, x2, . . . , xn and y1,y2, . . . ,yn complex numbers such that

xk
1 + xk

2 + · · ·+ xk
n = yk

1 + yk
2 + · · ·+ yk

n, k = 1,2, . . . ,n.

Show that x1, x2, . . . , xn and y1,y2, . . . ,yn are the same, up to ordering.

Solution. Denote ak = Sk(x1, . . . , xn) and bk = Sk(y1, . . . ,yn). Using Newton
formulas for the two series of numbers, we see that ak = bk for all k = 1, . . . ,n.
Hence, the numbers x1, x2, . . . , xn and y1,y2, . . . ,yn are the roots of the same
algebraic equation of degree n.

Example 7.23. Let x1, x2, . . . , xn be complex numbers. Show that if the Newton
sums P1(x1, . . . , xn) = P2(x1, . . . , xn) = · · · = Pn+1(x1, . . . , xn) then xi ∈ {0,1}
for all i. Prove that if x1, x2, . . . , xn are real numbers then the above hypothesis can
be replaced by P2 = P3 = P4.

Solution. First, we remark that Si(X1, . . . , Xk,0, . . . ,0) = Si(X1, . . . , Xk), for all
1 ≤ i ≤ n and all 1 ≤ k ≤ n. Therefore, the hypothesis do not change if we
assume that all numbers are non zero. Denote by Si = Si(x1, . . . , xn). By the
Newton formulas we have the equality:

Pn+1 − S1Pn + S2Pn−1 + · · ·+ (−1)nSnP1 = 0.
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Using the equality P1 = P2 = · · · = Pn+1 we obtain the identity

1− S1 + S2 − · · ·+ (−1)nSn = 0,

which gives

(1− x1)(1− x2) · · · (1− xn) = 0.

Assume that xn = 1. The hypothesis reproduces for the numbers x1, . . . , xn−1
and then, use induction.
In the case of real numbers, P2 = P3 = P4 implies that P2 − 2P3 + P4 = 0,
which can be written

n

∑
i=1

x2
i (1− xi)

2 = 0.

The conclusion is now obvious.

Example 7.24. Let a, b, c and d be real numbers such that a + b + c + d = 0 and
a7 + b7 + c7 + d7 = 0. Show that (a + b)(a + c)(a + d) = 0.

Solution. Apply Newton formulas to compute P1 to P7. One obtains the
equalities P2 =−2S2, P3 = S3, P4 = 2S2

2− 4S4, P5 =−5S2S3 and, finally, from
P7 = 0 one has 7S3(S4 − S2

2) = 0.
If S4− S2

2 = 0, one obtains P4 =−2S2
2, which means that a = b = c = d = 0.

In the case S3 = 0 one can see, using P1 = 0, that this is equivalent to

(a + b)(a + c)(a + d) = 0.

Example 7.25. Let p be a prime number. Find 1k + 2k + · · ·+ (p− 1)k (mod p).

Solution. The classes 1,2, . . . , p− 1 are the roots of the polynomial Xp−1 − 1.
Using Viète formulas and then Newton formulas we get P1 = · · ·= Pp−2 = 0
and Pp−1 = −1.

7.2 Number theoretic applications of symmetric polynomials

Given a polynomial f ∈ C[X] , can one decide if it has a double zero only by
performing additions, multiplications and divisions on its coefficients? The
answer to this question is yes. Let x1, . . . , xn be the roots of f counted with
multiplicity. Then, f has a double root if and only if F(x1, . . . , xn) = 0, where

F(x1, . . . , xn) = ∏
1≤i<j≤n

(xi − xj)
2.
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Clearly, F is a symmetric polynomial in x1, . . . , xn, hence by the funda-
mental theorem of symmetric polynomials, F can be written as a polynomial
expression in the symmetric sums S1(x1, . . . , xn), . . . , Sn(x1, . . . , xn).

Using Vieta’s relations, the symmetric sums are equal to the coefficients of
f , up to sign. Therefore, deciding whether F(x1, . . . , xn) = 0 amounts to per-
forming operations such as additions, multiplications and divisions on the
coefficients of f . Notice that the only divisions one might have to perform
are divisions by the dominant coefficient of f .

Let us bring our attention to one of the challenge problems from the pre-
vious set, which we now give as a Lemma.

Lemma 7.1. Let f ∈ Q[X1, . . . , Xn] be a symmetric polynomial and g(X) ∈ Q[X]
be a polynomial of degree n having z1, . . . ,zn ∈ C as roots. Then f (z1, . . . ,zn) ∈Q.
Moreover, if g is monic, then the conclusion still holds if we replace Q with Z in
every instance of this lemma.

Proof. Using the fundamental theorem of symmetric polynomials one can
write f (z1, . . . ,zn) as a polynomial h(S1(z1, . . . ,zn), . . . ,Sn(z1, . . . ,zn)). Now
Si(z1, . . . ,zn) are rational numbers, as the coefficients of g are rational. The
case when g is monic with integer coefficients follows by the same proof. �

Let us now have a look at the following corollary.

Corollary 7.1. Let f ∈Z[X] be a monic polynomial of degree n with complex roots
z1, . . . ,zn ∈C. Then for any prime p, (z1 + z2 + · · ·+ zn)p− (zp

1 + · · ·+ zp
n) ∈Z.

Moreover, one has

p | (z1 + z2 + · · ·+ zn)
p −

(
zp

1 + · · ·+ zp
n

)
.

Proof. The previous lemma implies immediately that

zp
1 + zp

2 + · · ·+ zp
n ∈Z and (z1 + z2 + · · ·+ zn)

p ∈Z.

Consider now

q(X1, . . . , Xn) =
Xp

1 + · · ·+ Xp
n − (X1 + · · ·+ Xn)p

p
∈Q[X1, . . . , Xn].

Using the multinomial formula it is easy to see that in fact all coefficients of
q are integers. Hence q(z1, . . . ,zn) ∈Z, by the previous Lemma. �

7.2.1 Algebraic numbers and algebraic integers

Definition 7.2. A number z ∈ C is algebraic if there is a non-zero f ∈ Q[X]
with f (z) = 0. For an algebraic number z, its minimal polynomial mz ∈Q[X]
is the monic polynomial of smallest degree which has z as a root.
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One many notice that the minimal polynomial mz of an algebraic number
z is unique and irreducible in Q[X]. Moreover, if f ∈Q[X] is such that f (z) =
0, then mz | f in Q[X]. The roots of mz are called the “conjugates” of z.

Definition 7.3. A number z∈C is an algebraic integer if there exists a monic
f ∈ Z[X] such that f (z) = 0. Algebraic integers are exactly the algebraic
numbers for which mz ∈Z[X].

The set of algebraic numbers is denoted by Q and the set of algebraic
integers by Z. We next show that the sum and product of two algebraic
numbers (or algebraic integers) is an algebraic number (or algebraic integer).

Theorem 7.4. The sets Z and Q are subrings of C.

Proof. Let α, β ∈Q and denote by α1 = α,α2, . . . ,αn and by β1 = β, β2, . . . , βm
are the conjugates of α and β, respectively. Recall that the αi’s and β j’s are
the roots of some irreducible polynomials with coefficients in Q. Consider

f (X) =
n

∏
i=1

m

∏
j=1

(X− αi − β j) ∈ C[X].

We first claim that f has rational coefficients. As α + β is a root of f , so
this would prove that α + β ∈Q.

To prove the claim, let us focus on a coefficient of f . This is a polynomial
expression in αi, β j. It is invariant under permutations of α1, . . . ,αn and also
under permutations of β1, . . . , βm. Let us see this coefficient c as a polynomial
with coefficients in the ring Q[β1, . . . , βm] which is symmetric in α1, . . . ,αn.

By the fundamental theorem of symmetric polynomials we have

c(α1, . . . ,αn, β1, . . . , βm) = B(S1(α1, . . . ,αn), . . . ,Sn(α1, . . . ,αn)),

where B ∈ (Q[β1, . . . , βm]) [X1, . . . , Xn]. Each of the n entries of this polyno-
mial is a rational number, so

c(α1, . . . ,αn, β1, . . . , βm) ∈Q[β1, . . . , βm].

But c is symmetric in β1, . . . , βm, hence

c(α1, . . . ,αn, β1, . . . , βm) = B′(S1(β1, . . . , βm), . . . ,Sm(β1, . . . , βm)),

where B′ ∈Q[X1, . . . , Xm]. Again, each entry in the evaluation of the polyno-
mial B′ is a rational number, hence c is rational, proving that α + β ∈Q.

To show that αβ ∈Q one can apply the same strategy for the polynomial

g(X) =
n

∏
i=1

m

∏
j=1

(X− αiβ j).

The proof for algebraic integers is obtained by replacing Q with Z. �
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Note that Q is in fact a field. Indeed, let z ∈ Q \ {0}. Then, its minimal
polynomial mz(X) = Xn + an−1Xn−1 + · · ·+ a1X + a0 has a0 6= 0, hence

zn + an−1zn−1 + · · ·+ a1z + a0 = 0,

from where

1 + an−1

(
1
z

)
+ · · ·+

(
1
z

)n
= 0,

hence z−1 is an algebraic number.
The example we are about to discuss generated a whole mathematical

theory and was probably the source of an important area of research in tran-
scendental number theory. Let us start by introducing a definition.

Definition 7.4. For a polynomial f (X) = an(X − x1) . . . (X − xn) ∈ C[X], we
define its Mahler measure to be

M( f ) = |an|max (1, |x1|) · · · · ·max (1, |xn|) .

It is easy to see that M( f · g) = M( f ) · M(g), for all f , g ∈ C[X]. Using
complex analysis one can prove that

M( f ) = e
∫ 1

0 ln| f (e2iπt)|.

We now present the following beautiful result of Kronecker.

Theorem 7.5. Let f ∈Z[X] be a monic polynomial with f (0) 6= 0 and M( f ) = 1.
Then, for all z ∈ C such that f (z) = 0, there exists n ∈N such that zn = 1.

Proof. Let x1, . . . , xn ∈ Q ⊆ C be the roots of f , counted with multiplicity.
Consider the polynomials

fk(X) =
(

X− xk
1

)
· · · · ·

(
X− xk

n

)
.

The coefficients of these polynomials are symmetric polynomial expres-
sions in x1, . . . , xk, hence fk ∈Z[X]. Moreover, note that the coefficients of fk
are bounded above by ( n

b n
2 c). This implies that there are only finitely many

polynomials fk, so there are i, j ∈N, with i > j such that fi = f j.
The latter equality in Z[X] gives(

X− xi
1

)
· · ·
(

X− xi
n

)
=
(

X− xj
1

)
· · ·
(

X− xj
n

)
.

We deduce that there exists a permutation σ ∈ Sn such that

xi
1 = xj

σ(1), . . . , xi
n = xj

σ(n).
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Let us now focus on the first zero x1. Remark that

xi2
1 = (xi

1)
i =
(

xj
σ(1)

)i
=
(

xi
σ(1)

)j
= xj2

σ(σ(1)).

Inductively, we get xir
1 = xjr

σr(1) for any r ∈N, where σr is the permutation
obtained by composing σ with itself r times.

As the order of the group Sn is n!, we have that

xin!

1 = xjn!

1 ,

so xin!−jn!

1 = 1 and this shows that x1 is an in! − jn! root of unity. �

We end this section with a question: are there algebraic integers lying on
the unit circle which are not roots of unity?

Example 7.26. Consider the sequence (xn)n≥0 defined by x0 = 4, x1 = x2 = 0,
x3 = 3 and xn+4 = xn+1 + xn. Prove that for any prime p, xp is a multiple of p.

Solution. The characteristic polynomial of the recursive relation is given by
f (X) = X4 − X − 1. It is easy to see that f cannot have a double zero (by
looking at the derivative f ′, for instance).

Using the theory of linear recursive sequences, it follows that the gen-
eral term of the sequence is of the form Arn

1 + Brn
2 + Crn

3 + Drn
4 for some

constants A, B, C, D. Here ri are the distinct zeros of the characteristic poly-
nomial. Because this polynomial has no rational zero, it is natural to sup-
pose that Arn

1 + Brn
2 + Crn

3 + Drn
4 is symmetric in r1, r2, r3 and r4. Thus,

A = B = C = D. This result can also be proved rigorously using Galois the-
ory, but such a proof goes beyond the scope of this book.

We will prove that xn = rn
1 + rn

2 + rn
3 + rn

4 using induction on n. For n≤ 4,
the assertion follows from Viete’s formulae. To prove that it holds for any
n, just notice that rn+4

i = rn+1
i + rn

i . The induction can be completed easily.
We are left to prove that p divides rp

1 + rp
2 + rp

3 + rp
4 for any prime number p.

This follows from Corollary 7.1.

Example 7.27. Let a1, a2, . . . , ak be positive real numbers such that

n
√

a1 + n
√

a2 + · · ·+ n
√

ak

is a rational number for all n ≥ 2. Prove that a1 = a2 = · · · = ak = 1.

Solution. First, we will prove that a1, a2, . . . , ak are algebraic numbers and
that a1a2 · · · ak = 1. Take an integer N > k and set

x1 = N!
√

a1, x2 = n!
√

a2, . . . , xk = n!
√

ak.

Then clearly xj
1 + xj

2 + · · ·+ xj
k is rational for all 1≤ j ≤ N.
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Using Newton’s formulae, we can easily deduce that all the symmetric
fundamental sums of x1, x2, . . . , xk are rational numbers. Hence x1, x2, . . . , xk
are algebraic numbers and so are a1, a2, . . . , ak. As we previously mentioned,
from the Newton’s formula we deduced that

x1 · x2 · · · · · xk = n!
√

a1a2 . . . ak

is rational, which happens for any N > k. This only happens if a1a2 · · · ak = 1.
Now let f (x) = brXr + br−1Xr−1 + · · ·+ b0 be a polynomial with integer

coefficients which vanishes at a1, . . . , ak. Clearly bra1, . . . , brak are algebraic
integers, but then

br ( n
√

a1 + n
√

a2 + · · ·+ n
√

ak) =
n
√

bn−1
r

(
n
√

bra1 +
n
√

bra2 + · · ·+ n
√

brak

)
is also an algebraic integer. Because it is also a rational number, we deduce
that it is a rational integer. Consequently,

(Yn)n≥1 = (br ( n
√

a1 + n
√

a2 + · · ·+ n
√

ak))n≥1

is a sequence of positive integers. Because it converges to kbr, it eventually
becomes equal to kbr (from a rank). Thus, there is a n such that

n
√

a1 + n
√

a2 + · · ·+ n
√

ak = k.

As a1a2 · · · ak = 1, the AM-GM inequality implies that a1 = a2 = · · ·= ak = 1.



Chapter 8
Cyclotomic Polynomials

The cyclotomic polynomials are a central object in number theory, hav-
ing many interesting properties and important applications. This section is
based on the results in [20] and [186] and the references therein.

For a start, we mention that cyclotomic polynomials play a key role in the
proof of the following classical results:

1) (Gauss-Wanzel) It is possible to construct the regular n-gon with a straight-
edge and compass if and only if n has the form 2k p1 p2 · · · pr, where k ≥ 0
and the pj’s are distinct Fermat primes.

2) (Dirichlet). Let n be a positive integer. Then there exist infinitely many
prime numbers p with p ≡ 1 (mod n).

3) (Wedderburn). Any finite associative skew field R is commutative, i.e., it
is a field.

Some key references devoted to cyclotomic polynomials and their coeffi-
cients are [54], [55], [95], [167], [168], [169] or [227]. Other important results
concerning the coefficients of cyclotomic polynomials and their properties
have also featured in the works [56], [57], [58], [76], [92] and [151].

Before providing specifi details about cyclotomic polynomials, we first
present some important examples of arithmetic functions used in this Chap-
ter. This digression will conclude with a description of the Möbius µ func-
tion and the associated inversion formula.

8.1 Arithmetic functions

In this section present some important arithmetic functions, inspired by the
excellent book of [108]. Most of the times, by arithmetic functions people
mean functions defined on N, but it is not uncommon to refer to functions
defined on Z or on Q as arithmetic. The constant and the identity functions
defined on N are trivial examples of arithmetic functions.

201
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Some classical examples of arithmetic functions appearing frequently in
number theory are as follows.

Example 8.1. The number of divisors function τ : N×→N∗, where

τ(n) = #{d ∈N∗ : d is a divisor of n}.

Example 8.2. The last digit function u : N∗→N, with u(n) = the last digit of n.

Two important classes of arithmetic functions behave naturally with re-
spect to the two fundamental operations on whole numbers.

An arithmetic function is called additive if f (mn) = f (m) + f (n), for all
m,n such that gcd(m,n) = 1.

Example 8.3. Let p be a prime. Then for every n ∈N∗ we denote by vp(n) the
natural number such that pvp(n) | n, but pvp(n)+1 - n. It is clear to see that for any
positive integers m,n we have vp(mn) = vp(m) + vp(n), hence vp is an additive
function. In the literature, vp appears under the name p-adic valuation.

Another important subcategory of arithmetic functions are the so-called
multiplicative functions. An arithmetic function f is called multiplicative if

f (mn) = f (m) f (n) for all m,n ∈N such that gcd (m,n) = 1. (8.1)

If f satisfies (8.1) for any integers m,n > 0, then it is totally multiplicative.

Example 8.4. If n = pe1
1 · · · p

ek
k is a positive integer written in its prime-power

factorization, then it is not hard to count that the number of divisors τ(n) =
(e1 + 1) · · · · · (ek + 1). Using this representation, one can see immediately that
τ is multiplicative. However, τ(9) = 3, whereas τ(3) · τ(3) = 4. This shows that τ
is not totally multiplicative.

The constant and the identity functions are totally multiplicative.

Example 8.5. The function f : N∗→N∗, where f (n) = 2n is not multiplicative.

Multiplicative functions play a key role in number theory, since in order
to compute the values of the function at any positive integer n, it is enough
to know the values of the function on the prime powers that divide n. To be
precise, let n = pe1

1 · · · p
ek
k be the factorization prime-power factorization of n.

If f is a multiplicative function, then using (8.1) inductively, we get

f (n) = f (pe1
1 ) · · · f (pek

k ).

Suppose f is a multiplicative function and suppose that f (n) 6= 0 for
some positive integer n. Then, using (8.1) we get that f (n) = f (n) f (1), hence
f (1) = 1. This shows that for any multiplicative function f , either f (1) = 1
or f (n) = 0 for all positive integers n.
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Moreover, it is worth noting that the set of multiplicative functions forms
a monoid with respect to the (pointwise) multiplication of functions. This is
because the constant function 1 is (totally) multiplicative and, it is easy to
show that if f and g are multiplicative functions, then so is their pointwise
product, i.e. the function n 7→ f (n)g(n) for all n.

For any positive integer n, let us denote by ϕ(n) the cardinality of the set

{m ∈N : 1≤ m ≤ n and gcd (m,n) = 1} .

Clearly, ϕ is an arithmetic function defined on the positive integers, taking
values in the positive integers and such that ϕ(1) = 1. It is called Euler’s
Totient Function and plays a central role in number theory.

Suppose m,n are coprime positive integers. Then, by the Chinese Remain-
der Theorem, there is an isomorphism of rings

Z/mnZ∼= (Z/mZ)× (Z/mnZ) ,

which gives rise to an isomorphism between their unit groups

(Z/mnZ)× ∼= (Z/mZ)× × (Z/nZ)× .

As the units in every ring Z/nZ correspond bijectively with the positive
integers less than or equal to n which are coprime to n, the group isomor-
phism above implies ϕ(mn) = ϕ(m)ϕ(n) for every coprime positive integers
m,n. This shows that the Euler Totient function ϕ is multiplicative. However,
it is easy to check that ϕ is not totally multiplicative.

This fact, together with a remark above, implies that in order to evaluate
ϕ(n) it is enough to evaluate ϕ(pe) for all distinct prime-powers pe appear-
ing in the factorization of n. Now, if p is prime, then gcd(m, pe) = 1 if and
only if gcd(m, p) = 1. In that case, we see that

ϕ(pe) = #{m : 1≤ m ≤ pe} − #{m : 1≤ m ≤ pe and p | m}
= pe − pe−1,

where for a set A we denoted by #A its cardinal.
We therefore have the following representations for ϕ(n)

ϕ(n) =
k

∏
i=1

(
pei

i − pei−1
i

)
=

k

∏
i=1

pei

(
1− 1

pi

)
= n

k

∏
i=1

(
1− 1

pi

)
, (8.2)

where n = pe1
1 · · · p

ek
k is the factorization prime-power factorization of n.

We remark that this property was proved in section 4.9, using the inclusion-
exclusion principle. To emphasize the utility of this representation, we prove
the following inequality involving Euler’s totient function.
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Example 8.6. For every composite number n ∈N∗, show that

ϕ(n) ≤ n−
√

n.

Solution. Denote by p1, p2, . . . , pk the set of all prime distinct divisors of n.
Since n is composite, there exists a j ∈ {1,2, . . . ,k} such that pj ≤

√
n.

Applying the previous formula, we deduce that

ϕ(n) = n
(

1− 1
p1

)
· · ·
(

1− 1
pk

)
≤ n

(
1− 1

pj

)
≤ n

(
1− 1√

n

)
= n−

√
n,

which is what we had to show.

Theorem 8.1. For any given multiplicative function f , the function

F(n) = ∑
d|n

f (d)

is multiplicative.

Before showing the proof of the theorem, let us give a few applications.

Corollary 8.1. The number of divisor function can be written as τ(n) = ∑
d|n

1, for

all n ∈N∗. As the constant function 1 is clearly (totally) multiplicative, it follows
from the theorem above that τ is multiplicative.

In the following corollary it is perhaps more difficult to give a direct proof
of the multiplicative property of the function.

Corollary 8.2. Let σ : N∗→N∗ be the sum of divisors function. Ideed, for any n
we have that σ(n) = ∑

d|n
d. As the identity function is multiplicative, the previous

theorem implies that σ is also multiplicative.

The next problem involves the sum of divisors function.

Example 8.7 (St. Petersburg Olympiad). Find all the solutions n,m,k ∈N∗ of

σ(n)k = nm.

Solution. Note that if n = 1, then every m,k ∈N∗ satisfy the equality.
Suppose that the triple (n,m,k) ∈N∗ is a solution such that n > 1, while

n = pα1
1 pα2

2 · · · p
αt
t is the factorisation of n into distinct prime powers. As

σ(n) ≥ n + 1, we deduce that k < m. Therefore, σ(n) = n
m
k . It follows that

σ(n) = pβ1
1 pβ2

2 · · · p
βt
t , where βi ≥ αi + 1, for all i ∈ {1,2, . . . , t}. First, note that

σ(n) ≥ pα1+1
1 pα2+1

2 · · · pαt+1
t .
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Secondly, note that for every i ∈ {1,2, . . . , t}, we have that pαi+2
i + 1 >

2pαi+1
1 , which implies that pαi+2

i − pαi+1
i > pαi+1

i − 1. From here we deduce
that for all such i,

pαi+1
i >

pαi+1
i − 1
pi − 1

= σ(pαi
i ).

One can therefore derive the chain of inequalities

σ(n) ≥ pα1+1
1 pα2+1

2 · · · pαt+1
t > σ(pα1

1 )σ(pα2
2 ) · · ·σ(pαt

t ) = σ(n),

a contradiction. To justify the last equality, we use the fact that σ is a mul-
tiplicative function. Hence, the given Diophantine equation has solutions
only when n = 1, when any m,k ∈N∗ satisfy the equation.

We now present an inequality that involves both functions τ and σ, the
number and sum of divisors functions.

Example 8.8. For every integer n ≥ 2, show that the following inequality holds

σ(n)
τ(n)

≥
√

n.

Solution. Let d1,d2, . . . ,dτ(n) be the positive divisors of n. These can be writ-
ten (by changing their order) as n

d1
, n

d2
, . . . , n

dτ(n)
.

Therefore, the square of the sums of divisors of n can be written as

σ2(n) =

(
n
d1

+
n
d2

+ · · ·+ n
dτ(n)

)(
d1 + d2 + · · ·+ dτ(n)

)
,

hence

σ2(n) = n

(
1
d1

+
1
d2

+ · · ·+ 1
dτ(n)

)(
d1 + d2 + · · ·+ dτ(n)

)
.

Applying the Cauchy-Buniakowski-Schwarz inequality for the last two
terms in the product on the right, we get that σ2(n)≥ nτ2(n), which is equiv-
alent to the inequality in the statement.

Example 8.9. The Euler Totient function ϕ, the number of divisors τ and the sum
od divisors σ, satisfy the following inequality

ϕ(n) + σ(n) ≤ nτ(n),

for any positive integer n≥ 2. The equality holds if and only if n is a prime number.
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Solution. First note that the inequality holds (trivially) with equality if n = p
is a prime number. Moreover, one can immediately check that the inequality
holds strictly if n = pk, k ≥ 2 is a prime power. To prove the inequality for
general n, we are going to use strong induction.

Note that the inequality is true for n = 2 and assume that the inequality
holds for every n such that 2 ≤ n ≤ k. We are going to prove that the in-
equality holds for k. If k is a prime power, we are done by the remark in
the first paragraph. Otherwise, we can write k = ab, where 1 < a,b < k and
gcd(a,b) = 1. As the functions ϕ,σ and τ are multiplicative, we have

ϕ(k) + σ(k) = ϕ(ab) + σ(ab) = ϕ(a)ϕ(b) + σ(a)σ(b).

the right-hand side is strictly less than (ϕ(a) + σ(a))(ϕ(b) + σ(b)). Now,
using the inductive hypothesis we get that

(ϕ(a) + σ(a))(ϕ(b) + σ(b)) ≤ aτ(a)bτ(b) = abτ(ab) = kτ(k),

which completes the induction. Looking carefully at the inequalities derived
above, one can easily justify the claimed equality case.

We have seen that the Euler totient function is multiplicative. Let us now
prove an identity which, combined with the previous theorem, allows one to
give an indirect proof of the fact that the identity function is multiplicative.

Example 8.10. For every n ∈N∗, we have n = ∑
d|n

ϕ(d).

Solution. By partitioning the set {1,2, . . . ,n} into the disjoint sets given by
Md = {1≤ i ≤ n | gcd(i,n) = d} for every positive divisor d of n. Note that

n = ∑
d|n
|Md|.

Let us now determine the cardinality of the set Md. If x ∈ Md, then the
integers x

d and n
d are coprime. In fact, this gives rise to a one-to-one corre-

spondence between the sets Md and {1 ≤ i ≤ n/d | gcd(i,n/d) = 1}. This
shows that |Md| = ϕ(n/d), hence

n = ∑
d|n

ϕ
(n

d

)
= ∑

d|n
ϕ(d),

where the last equality follows by changing the order of summation.

We now return to the proof of Theorem 8.1.

Proof (of Theorem 8.1). Let m,n be positive integers with gcd(m,n) = 1.
Then, all divisors d of the product mn can be written as d = ab, where a | m
and b | n. Since gcd(a,b) | gcd(m,n) two such integers a,b are also coprime.
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Using the fact that f is multiplicative, we see that for any such d = ab, we
can write f (d) = f (a) f (b) and therefore

F(mn) = ∑
d|mn

f (d) = ∑
a|m,b|n

f (ab) = ∑
a|m

f (a)∑
m|b

f (b) = F(m)F(n).

The conclusion follows. �

This raises some natural questions. For every multiplicative function F,
does there exists a multiplicative function f such that F(n) = ∑d|n f (d) for
all n? And if yes, given F is the function f unique? The Möbius µ function,
which we discuss in the next section allows us to answer these questions.

8.2 The Möbius µ function

The Möbius µ function can be defined multiplicatively on N∗ by just speci-
fying its values on prime powers. If p is a prime number, define µ(p) = −1
and µ(pk) = 0 for every k ≥ 2. Now the value µ(n) can be computed recur-
sively for any n ∈N∗.

Since we defined µ as a multiplicative function, we have that µ(1) = 1.
Moreover, one can easily check that µ(2) = −1, µ(3) = −1, µ(4) = 0, then
µ(5) = −1, µ(6) = µ(10) = 1 and µ(7 · 11 · 17) = −1.

It is easy to deduce that for any n ∈N∗, we have

∑
d|n

µ(d) =
{

1, if n = 1,
0, otherwise. (8.3)

Indeed, the result follows trivially for n = 1. If n = pk is prime power then
the sum consists of µ(1) + µ(p) = 1 + (−1) + 0 + · · ·+ 0, where the sum on
the right has k + 1 terms. In general, denote by

F(n) = ∑
d|n

µ(d).

By Theorem 8.1, it follows that F is a multiplicative function. Since we saw
that F vanishes on prime-powers, it follows that F(n) = 0 for any n ≥ 2.

We give another proof of the formula for the Euler totient function ϕ(n).

Example 8.11. Show that for any n ∈N∗, we have

ϕ(n) = n∑
d|n

µ(d)
d

.
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Solution. Since ϕ(n) gives counts the numbers that are less than n and co-
prime to n. So we can write

ϕ(n) =
n

∑
k=1

{
1, if (k,n) = 1,
0, otherwise.

Formula (8.3) allows one to write

∑
d|k and d|n

µ(d) =
{

1, if (k,n) = 1,
0, otherwise ,

therefore by replacing into the formula above we have

ϕ(n) =
n

∑
k=1

∑
d|k and d|n

µ(d).

By first changing the order of summation, we obtain

ϕ(n) = ∑
d|n

µ(d) ∑
1≤k≤n,d|k

1 = ∑
d|n

µ(d)
n
d

.

In the formula ϕ(n) = n ∑d|n
µ(d)

d from the example above, if we denote by
r = n/d, we can see the right hand side as a sum over all possible factoriza-
tions of n = dr, where d and r are positive integers. In other words,

ϕ(n) = ∑
d,r≥1,n=dr

µ(d)r. (8.4)

Recall that in Example 8.10 we saw

n = ∑
d|n

ϕ(d) = ∑
d,r≥1,n=dr

ϕ(d) · 1. (8.5)

Identities (8.4) and (8.5) are particular instances of a more general result.

Theorem 8.2 (Möbius inversion formula). For any two arithmetic functions f
and g we have

g(n) = ∑
ab=n

f (b) for every integer n ≥ 1

if and only if

f (m) = ∑
cd=m

µ(c)g(d) for every integer m ≥ 1.

The conclusion of the theorem is frequently written shortly as follows
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g(n) = ∑
d|n

f (d) for every n ≥ 1⇔ f (m) = ∑
d|m

µ(m/d)g(d) for every m ≥ 1.

Proof. If g(n) = ∑ab=n f (b), for all positive integers n, then

∑
cd=m

µ(c)g(d) = ∑
cd=m

µ(c) ∑
ab=d

f (b) = ∑
abc=m

µ(c) f (b)

which is further equal to

∑
b|m

f (b) ∑
ac=m/b

µ(c) = f (m),

as desired. In the last equality we used the fact that the sum on the right is
zero unless m

b = 1, which was explained in (8.3).
Conversely, if f (m) = ∑cd=m µ(c)g(d), for all positive integers m, then

∑
ab=n

f (b) = ∑
ab=n

∑
cd=b

µ(c)g(d) = ∑
acd=n

µ(c)g(d) = ∑
d|n

g(d) · ∑
ac=n/d

µ(c).

As in the first part, the relation (8.3) allows us to deduce that the second
sum in the last expression vanishes unless n

d = 1. The conclusion follows
immediately. �

The examples above, together with this theorem serve as motivation for
defining the following concept. Given two multiplicative functions f , g, we
define their convolution f ∗ g as follows

( f ∗ g)(n) = ∑
ab=n

f (a) f (b) for every n ∈N∗.

The set of arithmetic multiplicative functions, together with the convolu-
tion operation forms a commutative monoid, where the identity element is
the δ function, defined as

δ(n) =
{

1, if n = 1,
0, otherwise.

We will restrict ourselves to proving the fact that the set of multiplicative
functions is closed with respect to the convolution operation, leaving the
proofs of the other axioms of a monoid to the curious reader.

Indeed, suppose f and g are two multiplicative functions. Let m,n be two
coprime integers. Note that by definition

( f ∗ g)(mn) = ∑
ab=mn

f (a)g(b).
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It is easy to show that there exists integers r, s, t,u, such that gcd(r, s) = 1
and gcd(t,u) = 1 such that a = rs,b = tu, m = rt and n = su. Using this, note
that f (a) = f (rs) = f (r) f (s) and g(b) = g(tu) = g(t)g(u).

We then have

( f ∗ g)(mn) = ∑
rt=m,su=n

f (rs)g(tu) = ∑
rt=m

f (r)g(t) ∑
su=n

f (s)g(u)

and the right-hand side is easily seen to be equal to ( f ∗ g)(m) · ( f ∗ g)(n).
Since m, n are two arbitrarily chosen coprime numbers, this shows that f ∗ g
is a multiplicative function.

This observation about the convolution of two multiplicative functions,
together with Theorems 8.1 and 8.2, allows us to give a positive answer to
the two questions raised at the end of the previous section.

Indeed, if F is a multiplicative arithmetic function, then the function
f (m) = ∑d|m µ(m/d)F(d) is multiplicative. This is because f can be seen as
the convolution between the multiplicative functions µ and F. Now, Theo-
rem 8.2 guarantees that F(n) = ∑d|n f (d). The uniqueness of f follows im-
mediately from the direct implication of the aforementioned theorem.

8.3 Ramanujan sums

For every positive integers n and q, the Ramanujan sum ρ(n,q) is defined as

ρ(n,q) = ∑
gcd(a,n)=1

e2πi a
n q, (8.6)

where the sum is taken over all a such that 1≤ a ≤ n and gcd(a,n) = 1.
We note that the usual notation for these Ramanujan sums is cn(q). How-

ever, we use avoid the latter for, since we use a very similar notation for the
coefficients of cyclotomic polynomials. Another motivation for our choice of
notation is as follows. By fixing one of q or n, one can think of Ramanujan
sums as arithmetic functions of the remaining free variable.

We start by remarking that, by fixing n ∈ N∗, the arithmetic function
ρ(n, ·) : N∗→ C is periodic, as ρ(n,q + n) = ρ(n,q), for all q ∈N.

In what follows, we see that fixing q and regarding ρ(·,q) : N∗ → C as
a function in the variable n will unravel some remarkable properties. For
example, notice that when q = 0, one obtains the Euler Totient function, i.e.
ρ(n,0) = ϕ(n) for all n ∈N∗.

Let us also present the following identity which is useful in the later com-
putations involving Ramanujan sums.
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Example 8.12. For q ∈ Z, and every positive integer n, we consider the function

δq(n) =
n
∑

a=1
e

2πa
n ·i·q. We have the following identity

δq(n) =
{

n if n | q
0 if n - q .

Solution. Indeed, if n | q then all terms in the sum are 1 and the conclusion
follows. Otherwise, let n = d · n′, q = d · q′, where d = gcd(n,q). We have

n

∑
a=1

e2πi aq
n =

n

∑
a=1

e2πi aq′
n′ .

As q′ and n′ are coprime, exponentiation by q′ is an automorphism of the
group of n′-th roots of unity. Therefore, the last sum is

n

∑
a=1

e2πi a
n′ = d

n′

∑
a=1

e2πi a
n′ .

By Viéta’s formula applied to the polynomial Xn′ − 1, the sum vanishes.
Suppose q ∈N∗ is fixed. An immediate corollary of the example above is

that δq : N∗→N is a multiplicative function. Indeed, suppose m,n ∈N∗ are
coprime. Then, as nm | q if and only if n | q and m | q it follows that

δq(nm) = δq(n)δq(m). (8.7)

Theorem 8.3 (Kluyver). Let q ∈N∗ be fixed. Then

ρ(n,q) = ∑
d|gcd(n,q)

dµ
(n

d

)
for all n ∈N∗. (8.8)

Proof. In the previous example we saw that for all n ∈N∗, we have

δq(n) =
n

∑
a=1

e2πi aq
n =

{
n if n | q
0 if n - q .

This can be written as

δq(n) = ∑
d|n

∑
(a,d)=1

e2πi
q·a·n

d
n = ∑

d|n
∑

(a,d)=1
e2πi aq

d = ∑
d|n

ρ(d,q).

Applying Möbius inversion formula, we obtain (Theorem 8.2)

ρ(n,q) = ∑
d|n

δq(d)µ
(n

d

)
= ∑

d|gcd(n,q)
dµ
(n

d

)
. � (8.9)
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With the convention that µ
( n

d
)
= 0 if d - n, we obtain the following imme-

diate consequences of formula (8.8), valid for all n ∈N∗:

ρ(n,1) = µ(n);

ρ(n,2) = ∑
d|gcd(n,2)

dµ
(n

d

)
= µ(n) + 2µ (n/2) ;

ρ(n,3) = ∑
d|gcd(n,3)

dµ
(n

d

)
= µ(n) + 3µ (n/3) ;

ρ(n,4) = ∑
d|gcd(n,4)

dµ
(n

d

)
= µ(n) + 2µ (n/2) + 4µ (n/4) ;

ρ(n,5) = ∑
d|gcd(n,5)

dµ
(n

d

)
= µ(n) + 5µ (n/5) ;

ρ(n,6) = ∑
d|gcd(n,6)

dµ
(n

d

)
= µ(n) + 2µ (n/2) + 3µ (n/3) + 6µ (n/6) ;

ρ(n,7) = ∑
d|gcd(n,7)

dµ
(n

d

)
= µ(n) + 7µ (n/7) ;

ρ(n,8) = ∑
d|gcd(n,8)

dµ
(n

d

)
= µ(n) + 2µ (n/2) + 4µ (n/4) + 8µ (n/8) .

In addition, one can now derive the following corollary.

Corollary 8.3. For q ∈N∗ fixed, the function ρ(·,q) : N∗→ C is multiplicative.

Proof. Indeed, we derived in 8.9, that for any n ∈N∗,

ρ(n,q) = ∑
d|n

δq(d)µ
(n

d

)
.

As the right-hand-side is the convolution product δq ∗ µ of two multiplica-
tive functions, it follows from the results in the previous section that ρ(·,q)
is also a multiplicative function. �

We saw that the values of a multiplicative function are fully determined
by the values these functions take on prime powers. Let us describe these.

Suppose q ∈N∗ is fixed. Then, for every prime number p and for every
positive integer k, Theorem 8.3 yields

ρ(pk,q) = ∑
d|gcd(pk ,q)

dµ

(
pk

d

)
=

 pk − pk−1, if pk | q
−pk−1, if pk−1 | q but pk - q
0, otherwise.

In particular, ρ(·,q) takes integral values on powers of primes. Then, by
Corollary 8.3, ρ(·,q) are integral valued arithmetic functions, for all q ∈N∗.
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Example 8.13. Another interesting situation is when n = p1 p2 · · · pk is a prod-
uct of distinct k primes. Without loosing generality, suppose that gcd(n,q) =
p1 p2 · · · pm, where m ≤ k. The theorem presented above together with the defini-
tion of the Möbius function yield that

ρ(n,q) =
m

∑
i=1

(−1)k−iSi(p1, p2, . . . , pm),

where Si is the i-th fundamental symmetric polynomial in m variables.

Let us now see two example problems involving Ramanujan sums.

Example 8.14. For every n ∈N∗, prove that the following identities hold

∑
gcd(k,n)=1

cos
2kπ

n
= µ(n) and ∑

gcd(k,n)=1
sin

2kπ

n
= 0,

where the summation is over all integers 1≤ k ≤ n which are coprime to n.

Solution. We have

∑
gcd(k,n)=1

cos
2kπ

n
+ i ∑

gcd(k,n)=1
sin

2kπ

n
= ∑

gcd(k,n)=1
e2πi k

n = ρ(n,1) = µ(n),

so the identities follow by identifying the real and the imaginary parts.

We now present another interesting identity using Ramanujan sums.

Example 8.15. For every n ∈N∗, prove that the following identity holds

∑
gcd(k,n)=1

cos2 2kπ

n
=

1
2

ϕ(n) +
1
2

µ(n) + µ
(n

2

)
.

Solution. For every such n, we have that

ρ(n,2) = ∑
gcd(k,n)=1

e4πi k
n = ∑

gcd(k,n)=1

(
cos

4kπ

n
+ i sin

4kπ

n

)
,

hence, using the fact that ρ(n,2) is real-valued (actually integer-valued),

∑
gcd(k,n)=1

cos
4kπ

n
= ρ(n,2) and ∑

gcd(k,n)=1
sin

4kπ

n
= 0.

Therefore, using the double-angle formula for the cosine function,

∑
gcd(k,n)=1

cos2 2kπ

n
= ∑

gcd(k,n)=1

1 + cos 4kπ
n

2
=

1
2
(ϕ(n) + ρ(n,2)) .



214 8 Cyclotomic Polynomials

The conclusion follows from (8.8), using that µ(n/2) = 0 if n is odd.

Remark. Clearly, it follows that

∑
gcd(k,n)=1

sin2 2kπ

n
= ∑

gcd(k,n)=1

(
1− cos2 2kπ

n

)
=

1
2

ϕ(n)− 1
2

µ(n)− µ (n/2) .

8.4 Cyclotomic polynomials. Definition and basic properties

For an integer n≥ 1, recall that an nth root ζ is called primitive if ζn = 1, but
ζd 6= 1 for all 1≤ d < n. The n-th cyclotomic polynomial Φn is defined by

Φn(z) = ∏
ζn=1

(z− ζ) =
ϕ(n)

∑
j=0

c(n)j zj, (8.10)

where ζ are the n-th order primitive roots of unity, and ϕ is Euler’s totient
function, which is also the degree of the polynomial. The term cyclotomic
comes from the property of the nth roots of unity to divide the unit circle
into n equal arcs, forming a regular polygon inscribed in the unit circle.

The first few cyclotomic polynomials are

Φ1(z) = z− 1, Φ2(z) = z + 1, Φ3(z) = z2 + z + 1, Φ4(z) = z2 + 1,

Φ5(z) = z4 + z3 + z2 + z + 1, Φ6(z) = z2 − z + 1,

Φ7(z) = z6 + z5 + z4 + z3 + z2 + z + 1, Φ8(z) = z4 + 1,

Φ9(z) = z6 + z3 + 1, : Φ10(z) = z4 − z3 + z2 − z + 1,

Φ12(z) = z4 − z2 + 1, Φ14(z) = z6 − z5 + z4 − z3 + z2 − z + 1,

Φ15(z) = z8 − z7 + z5 − z4 + z3 − z + 1, Φ16(z) = z8 + 1,

Φ18(z) = z6 − z3 + 1, Φ20(z) = z8 − z6 + z4 − z2 + 1,

Φ21(z) = z12 − z11 + z9 − z8 + z6 − z4 + z3 − z1 + 1,

Φ22(z) = z10 − z9 + z8 − z7 + z6 − z5 + z4 − z3 + z2 − z + 1. (8.11)

Using the Möbius function µ, defined by

µ(n) =


1 if n = 1;
(−1)k if n = p1 p2 · · · pk;
0 if n = p2m,

where p, p1, . . ., pk are primes.
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An alternative form of (8.10) is obtained by the multiplicative version of
the Möbius inversion formula, as

Φn(z) = ∏
d|n

(
xd − 1

)µ(n/d)
. (8.12)

This is an important identity for products of cyclotomic polynomials.

Theorem 8.4. For every n ∈N∗, the following equality holds

zn − 1 = ∏
d|n

Φd(z), (8.13)

where Φd is the d-th cyclotomic polynomial.

Proof. Observe that the roots of the polynomial on the left are all n-th roots
of unity. However, ζ is an n-th root of unity if and only if ζ is a primitive root
of unity for exactly one positive divisor d of n. The roots of polynomials Φd
are, by definition, exactly the primitive d-th roots of unity, so the equality
(8.13) holds because the polynomials on both sides are monic, have simple
roots and their roots are in one-to-one correspondence. �

As an application, we now present a shorter (but more conceptual) proof
for the formula in Example 8.10.

Example 8.16. For every n ∈N∗, we have

n = ∑
d|n

ϕ(d).

Solution Each polynomial Φd has degree ϕ(d), so the identity follows by
identifying the degrees on both sides in the formula (8.13).

It is well-known that every cyclotomic polynomial has integer coefficients
and is irreducible over Z ([133, Theorem 1, p.195]). Numerous interesting
properties of the cyclotomic polynomials and their coefficients have been
discovered over more than a hundred years. Polynomials up to n < 105 only
have 0, 1 and −1 as coefficients, while −2 first appears as the coefficient of
the term z7 in Φ105. For the early history of such results we refer to the 1936
paper of E. Lehmer [163]. In 1987, J. Suzuki [220] proves that in fact, any
integer can be a coefficient of a cyclotomic polynomial of a certain degree.

The explicit computation of the coefficients of cyclotomic polynomials
involves elaborated calculations [206, p.258-259].

Lemma 8.1. The following properties are known:
1◦ Φpn(z) = Φn(zp) if p is a prime divisor of n.

2◦ Φn(z) = zϕ(n)Φn

(
1
z

)
for n > 1.

3◦ For n odd one has Φ2n(z) = Φn(−z).
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Theorem 8.5. Let p be a prime number and m be a positive integer. If p does not
divide m, then Φpm(z)Φm(z) = Φm (zp).

Proof. Let d be an integer such that d | pm and p does not divide d. Since
p is prime, gcd(p,d) = 1, hence d | m. Since p does not divide m, we have
gcd(p,m) = 1. If d is a divisor of m, then gcd(m/d, p) = 1. Since function µ
is multiplicative, it follows that

µ (mp/d) = µ (m/d)µ (p) = −µ (m/d) .

Assume that p | d, in which case d = pn for some integer n, where n | m,
therefore d | pm. In these notations we obtain

Φpm(z)Φm(z) = ∏
d|pm

(
zd − 1

)µ(pm/d)
Φm(z)

= ∏
d|pm, p|d

(
zd − 1

)µ(pm/d)
∏

d|pm, p-d

(
zd − 1

)µ(pm/d)
Φm(z)

= ∏
n|m

(zpn − 1)µ(pm/pn)∏
d|m

(
zd − 1

)µ(pm/d)
Φm(z)

= Φm(zp)∏
d|m

(
zd − 1

)−µ(m/d)
Φm(z)

= Φm(zp) (Φm(z))
−1 Φm(z) = Φm(zp).

�
By formula (8.10) the following interesting relations hold

dΦn(z)
dz

=
ϕ(n)−1

∑
j=0

c(n)j (ϕ(n)− j) zϕ(n)−j−1,

dαΦn(z)
dzα

=
ϕ(n)

∑
j=0

(ϕ(n)− j)! c(n)j

Γ (ϕ(n)− j− α + 1)
zϕ(n)−j−α.

Definition 8.1. The companion matrix representation of a monic polyno-
mial P(z) = a0 + a1z + · · ·+ am−1zm−1 + zm, m ≥ 2 is the square matrix

C(P(z)) =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −am−1

 .

The following properties can be defined for a general polynomial [67].



8.4 Cyclotomic polynomials. Definition and basic properties 217

Definition 8.2. Let m≥ 2 and P(z) = a0 + a1z + · · ·+ am−1zm−1 + amzm be a
polynomial with a0, . . . , am ∈R, having the factorization

P(z) = am (z− α1) · · · (z− αm) .

1◦ The length of the polynomial P is

L(P) = |a0|+ |a1|+ · · ·+ |am| =
m

∑
j=0
|aj|.

2◦ The height of the polynomial P is

H(P) = max
j=0,1,...,m

|aj|.

3◦ The Mahler measure of the polynomial P is

M(P) = |am| ·
m

∏
j=1

max
{

1, |αj|
}
|aj|.

The following results are known to connect these notions.

1
( m
bm/2c)

H(P) ≤ M(P) ≤ H(P)
√

m + 1,

L(P) ≤ 2m M(P) ≤ 2mL(P),
M(P) ≤ L(P) ≤ (m + 1)H(P),

where
(

m
bm/2c

)
is the binomial coefficient.

Sometimes one may use P+ = maxj=0,1,...,m |aj| and P− = minj=0,1,...,m |aj|.

The following results presents some properties of the companion matrix
for polynomials in general, and for cyclotomic polynomials in particular.

Proposition 8.1. If P(z) = a0 + a1z + · · ·+ am−1zm−1 + zm, then we have:

1◦ The characteristic polynomial of C (P(z)) is P(z), hence the eigenvalues of the
matrix C (P(z)) are the roots of P(z).

2◦ det (C (P(z))) = (−1)ma0 hence det (C (Φn(z))) = (−1)ϕ(n) = 1, n ≥ 3.

3◦ Tr (P(z)) = −am−1, hence Tr (Φn(z)) = µ(n).

The proof of item 3◦ follows from Theorem 8.8 or Theorem 8.15.
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8.5 Cyclotomic polynomials’ coefficients. Suzuki’s Theorem

Many studeis have been devoted to the coefficients of cyclotomic polynomi-
als. As seen in (8.11), the first cyclotomic polynomials only have 0, 1 and −1
as coefficients. In fact, just in 1883 Mignotti found that −2 first appears in
Φ105 as the coefficient of z7, and moreover Φn only has the coefficients 0 and
±1, whenever n is a product of at most two distinct primes. Next, the coeffi-
cient 2 first appears for n = 165, while all coefficients of Pn do not exceed 2 in
absolute value for n < 385. Later, in 1895 Bang showed that for n = pqr with
p < q < r odd primes, no coefficient of Φn is larger than p − 1. An impor-
tant breakthrough came in 1931, when Schur showed that the coefficients of
cyclotomic polynomials can be arbitrarily large in absolute value.

A history of early results can be found in [163]. Later, Suzuki [220] proved
that any integer number can be a coefficient of a cyclotomic polynomial of a
certain degree. For more details regarding the study of cyclotomic polyno-
mials and their coefficients we refer the reader to papers by Erdös [98], [99],
Ji [137], and to the monograph of Bachman[38].

In what follows, we present the aforementioned result of Suzuki [220].
Recall that we denote by c(n)i the coefficient of zi in the n-th cyclotomic poly-
nomial Φn(z), as in formula (8.10).

Theorem 8.6. For any integer s ∈Z, there exists n, i ∈N such that c(n)i = s.

The result above can be rephrased as follows: every integer can be found
among the coefficients of some cyclotomic polynomial. Based on [220], in the
proof of this theorem we will make us of the following consequence of the
Prime number theorem. We refer to [188] for the full statement and proof.

Proposition 8.2. Let t > 2 be any integer. Then there exist t distinct primes p1 <
p2 < · · · < pt such that p1 + p2 > pt.

Proof. Indeed, suppose the conclusion of the proposition is false for some
t > 2. Then for any distinct primes p1 < p2 < · · · < pt we should have that
p1 + p2 ≤ pt. In particular, this implies that 2p1 < pt. As a consequence, we
obtain that for any integer k ≥ 2 the number of primes between 2k−1 and
2k is strictly less than t. If π denotes the prime-counting function, it follows
that for every k ≥ t we have that π(2k) = kt, which gives a contradiction
to the Prime Number Theorem. The latter asserts that π(2k) is of the order

2k

k log2 , when k→∞.

Let us now return to the proof of the Theorem 8.6. Let t > 2 be any
odd integer. From the proposition above, we know that there are primes
p1 < p2 < · · · < pt such that p1 + p2 > pt. We will write shortly p = pt and
n = p1 p2 · · · pt for the product of all these primes. We will look at the n-th
cyclotomic polynomial Φn(z).
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Following an earlier idea of Schur, the Suzuki Theorem considers the cy-
clotomic polinomial Φn(z) modulo zp+1. We have

Φn(z) =
t

∏
i=1

(1− zpi )/(1− z) (mod zp+1)

= (1 + z + · · ·+ zp)(1− zp1 − · · · − zpt) (mod zp+1)

By this formula we deduce that that c(n)p = −t + 1 and c(n)p−2 = −t + 2.
Because t takes every odd positive values greater or equal than 3, this shows
that all the integers in the set {s ∈ Z : s ≤ −1} can be found among the
coefficients of cyclotomic polynomials.

It is known that for any odd positive integer m, we have the identity
Φ2m(z) = Φm(−z). As for p1 ≥ 3, the product n = p1 p2 · · · pn is odd, this
implies that for the above n we have c(2n)

p = t − 1 and c(2n)
p−2 = t − 2 which

implies that also the integers in the set {s ∈ Z : s ≥ 1} can be found among
coefficients of cyclotomic polynomials.

We noted earlier in this chapter that 0 = c(4)1 , which end the proof. �

Given an integer |k| ≥ 2, an interesting follow-up problem consists of
finding the minimal m for which there exists an n such that c(n)m = k. The
problem was first considered in 1991 by Grytezuk and Tropak [113], and
here we describe some of the progress made on this, following [222].

If m is such a natural number, then for all n, we must have c(n)r 6= k for
all r < m. Taking for instance k = −2, it is known that m = 7 is minimal and
c(105)

7 = −2. Recall in (8.12) we deduced that

Φn(z) = ∏
d|n

(
1− zd

)µ(n/d)
,

where µ is the Möbius function. By setting µ(n/d) = 0 whenever n/d is not
an integer, we can write

Φn(z) =
∞

∏
d=1

(
1− zd

)µ(n/d)
. (8.14)

Hence, for a square-free n, the value c(n)m depends only on the values of µ(n),
µ(n/d) and on the primes that are less that m + 1 and divide n.

The following interesting result was proved by Endo [95], who used
mathematical induction ande earlier results by Bloom [65] and Erdös [98]).
We here provide a direct proof and some simplifications. Then we will for-
mulate a counterpart for the inverse cyclotomic polynomials.
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Theorem 8.7. The following formula holds

c(n)m = ∑
i1+2i2+···+mim=m

(−1)i1+···+im
(

µ(n)
i1

)(
µ(n/2)

i2

)
· · ·
(

µ(n/m)

im

)
,

(8.15)

where (i1, . . . , im) runs over all the non-negative integral solutions of the equation
i1 + 2i2 + · · ·+ mim = m, for m a positive integer.

Proof. We write the infinite product formula (8.14), as

∞

∑
m=0

(
∑

i1+2i2+···+mim=m
(−1)i1+···+im

(
µ(n)

i1

)(
µ(n/2)

i2

)
· · · · ·

(
µ(n/m)

im

))
zm,

and identify the coefficients of zm. �

By formula (8.15) if we fix m, we can obtain the first coefficients as follows:

• For m = 1 the equation i1 = 1 has the solutions i1 = 1, so one obtains

c(n)1 = −µ(n). (8.16)

• For m = 2 the equation i1 + 2i2 = 2 has the solutions (i1, i2) = (2,0) and
(i1, i2) = (0,1). Hence, once obtains

c(n)2 = ∑
i1+2i2=2

(−1)i1+i2
(

µ(n)
i1

)(
µ(n/2)

i2

)
=

(
µ(n)

2

)
−
(

µ(n/2)
1

)
=

1
2

µ(n) (µ(n)− 1)− µ (n/2) . (8.17)

• For m = 3 the solutions of the equation i1 + 2i2 + 3i3 = 3 are (i1, i2, i3) =
(3,0,0), (i1, i2, i3) = (1,1,0) and (i1, i2, i3) = (0,0,1). This gives

c(n)3 = ∑
i1+2i2+3i3=3

(−1)i1+i2+i3
(

µ(n)
i1

)(
µ(n/2)

i2

)(
µ(n/3)

i3

)
= −

(
µ(n)

3

)
+

(
µ(n)

1

)(
µ(n/2)

1

)
−
(

µ(n/3)
1

)
= −µ(n) (µ(n)− 1) (µ(n)− 2)

6
+ µ(n)µ(n/2)− µ(n/3)

= −µ(n)3 − 3µ(n)2 + 2µ(n)
6

+ µ(n)µ(n/2)− µ(n/3)

=
µ(n)2 − µ(n)

2
+ µ(n)µ(n/2)− µ(n/3), (8.18)

where we used that µ(n)3 = µ(n), leading to
(

µ(n)
2

)
= −

(
µ(n)

3

)
.
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• For m = 4 the solutions (i1, i2, i3, i4) of equation i1 + 2i2 + 3i3 + 4i4 = 4 are
(0,0,0,1), (1,0,1,0), (0,2,0,0), (2,1,0,0), and (4,0,0,0). This gives

c(n)4 = ∑
i1+2i2+3i3+4i4=4

(−1)i1+···+i4
(

µ(n)
i1

)(
µ(n/2)

i2

)(
µ(n/3)

i3

)(
µ(n/4)

i4

)
=

(
µ(n)

4

)
−
(

µ(n)
2

)
µ(n/2) +

(
µ(n/2)

2

)
+ µ(n)µ(n/3)− µ(n/4)

=
µ(n)2 − µ(n)

2
(1− µ(n/2)) +

µ(n/2)2 − µ(n/2)
2

+ µ(n)µ(n/3)− µ(n/4), (8.19)

where we used that µ(n)3 = µ(n).

We now prove a result which helps us simplify the calculations of coeffi-
cients by Endo’s Theorem 8.15.

Lemma 8.2. Let (K,+, ·) be a a field such that charK = 0, and x ∈ K an element
for which x3 = x. If k ≥ 2 is an integer, then the following identity holds(

x
k

)
= (−1)k

(
x
2

)
, (8.20)

where
(

x
k

)
=

x (x− 1) · · · (x− k + 1)
k!

is a formal binomial coefficient.

Proof. Since x3 − x = 0, the following relations hold(
x
k

)
+

(
x

k + 1

)
=

x (x− 1) · · · (x− k + 1)
k!

+
x (x− 1) · · · (x− k + 1) (x− k)

(k + 1)!

=
x (x− 1) · · · (x− k + 1)

(k + 1)!
· (k + 1 + x− k)

= (x + 1) x (x− 1)
∏k

j=3 (x− j + 1)

(k + 1)!
= 0.

This identity shows that ( x
k+1) = −(

x
k), for k ≥ 0, hence(

x
2

)
= −

(
x
3

)
=

(
x
4

)
= · · · = (−1)k

(
x
k

)
,

confirming the desired identity for k ≥ 2. �

As a consequence, since µ(n) ∈ {−1,0,1} (n≥ 1), ensures that µ(n)3 = µ(n),
for an integer k ≥ 2 we have(

µ(n)
k

)
= (−1)k

(
µ(n)

2

)
. (8.21)



222 8 Cyclotomic Polynomials

Therefore, if (i1, . . . , im) is a solution of the equation i1 + 2i2 + · · ·+ mim = m
and for a given j = 1, . . . ,m the corresponding index satisfies ij ≥ 2, then the

corresponding binomial coefficient in (8.15) having the form (−1)ij(µ(n/j)
ij

),

can be replaced using formula (8.21) by (µ(n/j)
2 ). For example, this allows

quicker calculations for c(n)3 in (8.18) and c(n)4 in (8.19). Splitting the indices
of a fixed vector (i1, . . . , im) solution to i1 + 2i2 + · · ·+ mim = m into two sets

J1 =
{

j ∈ 1, . . . ,m | ij = 1
}

, J2 =
{

j ∈ 1, . . . ,m | ij ≥ 2
}

,

the corresponding term in Endo’s formula can be rewritten as

(−1)i1+···+im
(

µ(n)
i1

)(
µ(n/2)

i2

)
· · ·
(

µ(n/m)

im

)
= (−1)|I1| ·∏

j∈J1

µ (n/j) ·∏
j∈J2

(
µ (n/j)

2

)
. (8.22)

We first find upper bounds for selected coefficients.

Example 8.17. Let us confirm that |c(n)2 | ≤ 1.

Solution. Indeed, by the Theorem, and formula (8.17), when µ(n) = 0 or 1,
1
2 µ(n) (µ(n)− 1) = 0, hence c2 =−µ (n/2). On the other hand, when µ(n) =
−1, one obtains 1/2µ(n) (µ(n)− 1) = 1. Clearly, if the number n/2 is an
integer, then µ(n/2) = 1, hence c2 = 0. On the other hand, when n/2 is not
an integer, we gave µ(n/2) = 0, in which case c2 = 1. One can observe that
in all cases |c(n)2 | ≤ 1.

Similar calculations can be used to prove that |c(n)m | ≤ 1 for m = 3, . . . ,6.
Below we detail the computations for m = 7.

Example 8.18. Let us prove that |c(n)7 | ≤ 2.

Solution. We analyse all configurations for which i1 + 2i2 + · · ·+ 7i7 = 7 and
the formula below :

c(n)7 = ∑
i1+2i2+···+7i7=7

(−1)i1+···+i7
(

µ(n)
i1

)(
µ(n/2)

i2

)
· · ·
(

µ(n/7)
i7

)
. (8.23)

Using this approach it is proved that

(I). c(n)7 = −2 for µ(n) = 1 and n divisible by 2× 3× 5× 7;

(II). c(n)7 = 2 when µ(n) = −1, for n odd and divisible by 3× 5× 7;

(III). |c(n)7 | ≤ 1 otherwise.
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Indeed, the details of these cases are discussed below.
Case (I). For µ(n) = 0, one has (µ(n)

i1
) for i1 ≥ 1, hence

c(n)7 = ∑
2i2+···+7i7=7

(−1)i2+···+i7
(

µ(n/2)
i2

)
· · ·
(

µ(n/7)
i7

)
,

while the equation 2i2 + · · ·+ 7i7 = 7 has only the four solutions

i2 = 2, i3 = 1; i2 = 1, i5 = 1; i3 = 1, i4 = 1; i7 = 1,

where the numbers not explicitly mentioned are zero.
It follows that

c(n)7 = −1
2

µ (n/2) (µ (n/2)− 1)µ (n/3) + µ (n/2)µ (n/5)

+ µ (n/3)µ (n/4)− µ (n/7) .

Here we have three scenarios.
(I-a). If µ(n/2) = 1, then n is a multiple of 4, which implies that we have

µ(n/3) = µ(n/5) = µ(n/7) = 0, hence c7 = 0.
(I-b). If µ(n/2) = 0 and p2 | n with p 6= 7 and 73 | n, then

c(n)7 = µ (n/3)µ (n/4)− µ (n/7) .

If µ(n/2) = 0 and 72 | n, then

c(n)7 = −µ (n/7) .

(I-c). If µ(n/2) = −1, then n must be a multiple of 4 and so we have
µ(n/3) = µ(n/5) = µ(n/7) = 0, hence c7 = 0.

Case (II). When µ(n) = 1, we have (µ(n)
i1

) = 0 for i1 ≥ 2, and as µ(n/4) = 1

c(n)7 = µ (n)
1
6

µ (n/2) (µ (n/2)− 1) (µ (n/2)− 2)

− µ (n)
1
2

µ (n/3) (µ (n/3)− 1) + µ (n)µ (n/6)

− 1
2

µ (n/2) (µ (n/2)− 1)µ (n/3) + µ (n/2)µ (n/5)− µ (n/7) .

(IIa). If n is not even, then µ(n/2) = 0, therefore

c(n)7 = −1
2

µ (n/3) (µ (n/3)− 1)− µ (n/7) ,

where µ(n) = 1, while −µ(n/7) = 1 or 0, if 7 | n or not. Also, we have
− 1

2 µ (n/3) (µ (n/3)− 1) = −1 or 0, if 3 | n or not, hence |c7| ≤ 1.
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(II-b). If n is a multiple of 2, then µ (n/2) = −1, hence

c(n)7 =− 1− 1
2

µ (n/3) (µ (n/3)− 1)

+ µ (n/6)− µ (n/3)− µ (n/5)− µ (n/7) .

(II-b-1). If n is not multiple of 3, then µ (n/3) = 0, so we have

c(n)7 = −1− µ (n/5)− µ (n/7) .

Since µ(n) = 1 and µ (n/5), µ (n/7) are −1 or 0, it follows that |c7| ≤ 1.
(II-b-2). If 3 | n then µ (n/3) = −1 so that µ (n/6) = 1, hence

c(n)7 = −1− 1 + 1 + 1− µ (n/5)− µ (n/7) .

In this case if 5 | n and 7 | n then |c7| = 2. For example, this can be checked
for n = 2× 3× 5× 7 = 210, where c7 = 2.

Case (III). When µ(n) =−1, (µ(n)
i1

) = (−1)i1 and µ(n/4) = 0 since n/4 is not
an integer. Hence the following formula is obtained:

c(n)7 = 1− µ (n/2)− µ (n/3) +
1
2

µ (n/2) (µ (n/2)− 1) + µ (n/2)µ (n/3)

− µ (n/5)− 1
6

µ (n/2) (µ (n/2)− 1) (µ (n/2)− 2) +
1
2

µ (n/3) (µ (n/3)− 1)

− µ (n/6)− 1
2

µ (n/2) (µ (n/2)− 1)µ (n/3) + µ (n/2)µ (n/5)− µ (n/7) .

Since µ(n) =−1, with µ(n/2) and µ(n/3) being 1 or 0, the formula becomes

c(n)7 = (1− µ (n/2)) (1− µ (n/3))− µ (n/5)− µ (n/6)
+ µ (n/2)µ (n/5)− µ (n/7) .

(III-a). If µ(n/2) = 1 one has

c(n)7 = −µ (n/6)− µ (n/7) .

Since µ(n/2) = 1, we get µ(n) = 0 or −1. Also µ(n/7) = 0 or 1, so |c7| ≤ 1.
(III-b). If µ(n/2) = 0 then µ(n/6) = 0 and

c(n)7 = 1− µ (n/3)− µ (n/5)− µ (n/7) .

Hence, if µ(n/3) = µ(n/5) = µ(n/7) = 1, in which case c7 = −2. One can
check that for n = 3× 5× 7 = 105 one has c7 = −2.

In the same paper it is mentioned that |c(n)8 | ≤ 2 and |c(n)9 | ≤ 2.
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In the aforementioned article [113], Grytezuk and Tropak derived the fol-
lowing recurrence relation for these coefficients. First, observe that c(n)0 = 1.

Then, for m ≥ 2 we have

c(n)m = −µ(n)
m

m−1

∑
l=0

µ(gcd(n,m− l))ϕ(gcd(n,m− l))c(n)l , (8.24)

where ϕ denotes the Euler’s totient function.

We note the following interesting connection between the coefficients of
cyclotomic polynomials and Ramanujan sums.

Let c(n)j be the coefficient of zj in the n-th cyclotomic polynomial. We first
recall that the cyclotomic polynomials are reciprocal. Moreover, for every
1≤ j≤ ϕ(n)− 1, using Viéta’s formula one can write c(n)j = c(n)

ϕ(n)−j the eval-
uation of the symmetric polynomial Sj in the primitive n-th roots of unity.
On the other hand, the Ramanujan sums ρ(n,k) are just the evaluation of the
symmetric polynomial Pk in the primitive n-th roots of unity.

Newton’s identities discussed previously, assert that the polynomials
S1, . . . ,Sϕ(q) and P1, P2, . . . , Pϕ(n) are related by the following relations

Pk − S1Pk−1 + S2Pk−2 − · · ·+ (−1)k−1Sk−1P1 + (−1)kkSk = 0,

which hold for every k ∈ {2, . . . , ϕ(n)}.

This leads to an interesting recursive formula.

Theorem 8.8. The following identities hold for every k in the aforementioned set:

c(n)k = −1
k

[
ρ(n,k) + ρ(n,k− 1)c(n)1 + · · ·+ ρ(n,1)c(n)k−1

]
. (8.25)

We apply the above recurrence relation to compute the first four coeffi-
cients c(n)k , for every n ∈N∗ as follows:

• For k = 1 one obtains

c(n)1 = −ρ(n,1) = −µ(n).

• For k = 2 we have

c(n)2 = −1
2

[
ρ(n,2) + ρ(n,1)c(n)1

]
= −1

2

[
µ(n) + 2µ (n/2)− µ(n)2

]
=

µ(n)2 − µ(n)
2

− µ (n/2) .
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• For k = 3, using the identity µ(n)3 = µ(n) one obtains

c(n)3 = −1
3

[
ρ(n,3) + ρ(n,2)c(n)1 + ρ(n,1)c(n)2

]
= −µ(n) + 3µ(n/3)

3
+

µ(n) + 2µ(n/2)
3

µ(n)−

− µ(n)
(

µ(n)2 − µ(n)
6

− µ(n/2)
3

)
=

µ(n)2 − µ(n)
2

+ µ(n)µ(n/2)− µ(n/3).

• For k = 4 since µ(n)3 = µ(n) and µ(n)4 = µ(n)2 we confirm that

c(n)4 = −1
4

[
ρ(n,4) + ρ(n,3)c(n)1 + ρ(n,2)c(n)2 + ρ(n,1)c(n)3

]
= −µ(n) + 2µ(n/2) + 4µ(n/4)

4
+

µ(n) + 3µ(n/3)
4

µ(n)

− µ(n) + 2µ(n/2)
4

(
µ(n)2 − µ(n)

2
− µ(n/2)

)
−
(

µ(n)2 − µ(n)
8

+
µ(n)µ(n/2)

4
− µ(n/3)

4

)
µ(n)

=
µ(n)2 − µ(n)

2
(1− µ(n/2)) +

µ(n/2)2 − µ(n/2)
2

+ µ(n)µ(n/3)− µ(n/4).

The relation (8.25) suggests that every coefficient c(n)k of the n-th cyclo-
tomic polynomial is a polynomial with rational coefficients in the variables
ρ(n,k), k = 1,2, . . . , ϕ(n)− 1 given by Ramanujan sums. The explicit form of
this polynomial is given in the following result, linked to Theorem 7.3.

Theorem 8.9. We have

c(n)k = ∑
l1+2l2+···+klk=k

(−1)l1+l2+···+lk ρ(n,1)l1

1l1 l1!
· ρ(n,2)l2

2l2 l2!
· · · · · ρ(n,k)lk

klk lk!
. (8.26)

As direct corollaries of the above, we can recover the formulas for the first
four cyclotomic coefficients as follows:

• For k = 1, the equation l1 = 1 has the (only) solution l1 = 1, hence

c(n)1 = −ρ(n,1) = −µ(n).

• For k = 2, the equation l1 + 2l2 = 2 has the solutions (l1, l2) = (2,0) and
(l1, l2) = (0,1). We therefore get
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c2 =
1
2

ρ(n,1)2 − 1
2

ρ(n,2) =
1
2

µ2(n)− 1
2
(µ(n) + 2µ(n/2))

=
µ(n)2 − µ(n)

2
− µ(n/2).

Recall that µ(n)3 = µ(n) for every n ∈N∗ and using this identity one can
simplify the expressions involving powers of the Möbius function.

• For k = 3 the solutions (l1, l2, l3) of the equation l1 + 2l2 + 3l3 = 3 are
(3,0,0), (1,1,0) and (0,0,1), therefore

c(n)3 = −1
6

ρ3(n,1) +
1
2

ρ(n,1)ρ(n,2)− 1
3

ρ(n,3)

= −1
6

µ3(n) +
1
2

µ(n)
(

µ(n) + 2µ
(n

2

))
− 1

3
(µ(n) + 3µ (n/3))

=
µ(n)2 − µ(n)

2
+ µ(n)µ (n/2)− µ (n/3) .

• For k = 4, the solutions (l1, l2, l3, l4) of the equation l1 + 2l2 + 3l3 + 4l4 = 4
are (4,0,0,0), (2,1,0,0), (0,2,0,0), (1,0,1,0), (0,0,0,1), hence

c(n)4 =
ρ(n,1)4

24
− 1

4
ρ(n,1)2ρ(n,2) +

1
8

ρ2(n,2) +
1
3

ρ(n,1)ρ(n,3)− 1
4

ρ(n,4)

=
1

24
µ4(n)− 1

4
µ2(n) (µ(n) + 2µ (n/2)) +

1
8
(µ(n) + 2µ (n/2))2

+
1
3

µ(n) (µ(n) + 3µ (n/3))− 1
4

(
µ(n) + 2µ (n/2) + 4µ

(n
4

))
=

µ(n)2 − µ(n)
2

(1− µ(n/2)) +
µ(n/2)2 − µ(n/2)

2
+ µ(n)µ(n/3)− µ(n/4).

Using the identity µ3 = µ in Theorem 8.7, we obtain a useful result.

Corollary 8.4. For every n ∈N∗ and every k ∈ {1,2, . . . , ϕ(n)}, the cyclotomic
coefficient c(n)k is a polynomial with rational coefficients in µ(n/d), where d is a
divisor of n. Moreover, the degree of µ(n/d) in every monomial is at most 2.

8.6 The integral formula for the coefficients of Φn

Explicit formulae calculations for the coefficients are mentioned in [206,
p.258-259], and involve complicated expressions. Using Stirling and Bernoulli
numbers, [165] has obtained formulae for the coefficients of Φn(z + 1) as
polynomials with rational coefficients of certain Jordan functions.
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Integer sequences related to the coefficients of cyclotomic polynomials
can be found in the Online Encyclopedia of Integer Sequences [190].

In this section we use derive an integral formula for the coefficients of Φn,
then discuss some applications, related to the direct and alternate sums of
coefficients, along with a formula for the mid-term of Φn. Integral formulae
for the coefficients were derived by Andrica and Bagdasar in [20].

8.6.1 The integral formula

The proof a known identity involving Euler’s totient function.

Lemma 8.3. Let n ≥ 3 be a positive integer. The following formula holds:

∑
1≤k≤n−1

gcd(k,n)=1

k =
n
2

ϕ(n). (8.27)

Proof. If k ∈ {1, . . . ,n− 1} is relatively prime with n, then so is number n− k.
There are ϕ(n) numbers relatively prime with n in total, hence there are
ϕ(n)/2 pairs of numbers which sum up to n. �

In order to get a unitary formula for c(n)j , we introduce the function

Λn(t) = ∏
1≤k≤n−1

gcd(k,n)=1

sin
(

t− kπ

n

)
. (8.28)

For n = 1,2 one obtains the following expressions:

Λ1(t) = sin (t− π) = −sin t,

Λ2(t) = sin
(

t− π

2

)
= −cos t.

As polynomials Φ1(z) and Φ2(z) are linear, we may assume n ≥ 3.

Theorem 8.10. The coefficients c(n)j are given by the following integral formula:

c(n)j =
2ϕ(n)

π

∫ π

0
Λn(t) · cos(ϕ(n)− 2j)tdt, j = 0,1, . . . , ϕ(n). (8.29)

Proof. Denote by ζn = cos 2π
n + i sin 2π

n and let z = cos2t+ i sin2t, t ∈ [0,2π].
By the well-known de Moivre formula and work with complex numbers

in polar form (see for example [6]), for k = 1, . . . ,n, we have
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z− ζk
n =

(
cos2t− cos

2kπ

n

)
+ i
(

sin2t− sin
2kπ

n

)
= −2sin

(
t− kπ

n

)
sin
(

t +
kπ

n

)
+ 2i sin

(
t− kπ

n

)
cos
(

t +
kπ

n

)
= 2i sin

(
t− kπ

n

)[
cos
(

t +
kπ

n

)
+ i sin

(
t +

kπ

n

)]
.

By Lemma 8.3, for n ≥ 3, one can write the polynomial Φn(z) in the form

Φn(z) = ∏
1≤k≤n−1

gcd(k,n)=1

(z− ζk
n)

= (2i)ϕ(n) ∏
1≤k≤n−1

gcd(k,n)=1

sin
(

t− kπ

n

)[
cos
(

t +
kπ

n

)
+ i sin

(
t +

kπ

n

)]

= (2i)ϕ(n)Λn(t) ∏
1≤k≤n−1

gcd(k,n)=1

[
cos
(

t +
kπ

n

)
+ i sin

(
t +

kπ

n

)]

= (2i)ϕ(n)Λn(t)
[

cos
(

ϕ(n)t +
ϕ(n)π

2

)
+ i sin

(
ϕ(n)t +

ϕ(n)π
2

)]
= (2i)ϕ(n)(−1)

ϕ(n)
2 Λn(t) [cos ϕ(n)t + i sin ϕ(n)t]

= 2ϕ(n)Λn(t) [cos ϕ(n)t + i sin ϕ(n)t] .

where we have used that ϕ(n) is even for n ≥ 3, and the multiplication of
complex numbers in polar form. For every j = 0,1, . . . , ϕ(n), one may write

c(n)j + ∑
k 6=j

c(n)k zk−j = z−j ∏
1≤k≤n−1

gcd(k,n)=1

(z− ζk
n)

= 2ϕ(n)Λn(t) (cos2jt− i sin2jt) [cos ϕ(n)t + i sin ϕ(n)t]

= 2ϕ(n)Λn(t)[cos(ϕ(n)− 2j)t + i sin(ϕ(n)− 2j)t].

Integrating on the interval [0,π] we obtain formula (8.29). This is true
since the integral of zk−j over [0,π] vanishes whenever k 6= j. �

In addition, from the proof of the integral formula (8.29) it follows that∫ π

0
Λn(t)sin(ϕ(n)− 2j)tdt = 0, j = 0,1, . . . , ϕ(n). (8.30)
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8.6.2 Some applications of the integral formula

The formula in Theorem 8.10 can be used to show that the coefficients of the
cyclotomic polynomial are reciprocal, to derive compact formulae for the
mid-term of cyclotomic polynomials, as well as for the direct and alternate
sums of coefficients. Details of the calculations can be found in [20].

Reciprocity of coefficients. It is known that the cyclotomic polynomial
Φn(z) is reciprocal, that is its coefficients satisfy

c(n)j = c(n)
ϕ(n)−j, j = 0,1, . . . , ϕ(n).

Indeed, using formula (8.29), for every j = 0,1, . . . , ϕ(n), we have

c(n)
ϕ(n)−j =

2ϕ(n)

π

∫ π

0
Λn(t) · cos (ϕ(n)− 2(ϕ(n)− j)) tdt

=
2ϕ(n)

π

∫ π

0
Λn(t) · cos (ϕ(n)− 2j) tdt = c(n)j .

Direct sum of coefficients Φn(1). The following explicit formula is known:

Φn(1) =


0 if n = 1;
p if n = pm;
1 otherwise,

(8.31)

where m ≥ 1 is an integer and p is prime. This integer sequence is labeled
A014963 in [190], has stretches of 1 of arbitrary length, and starts with

0,2,3,2,5,1,7,2,3,1,11,1,13,1,1,2,17,1,19,1,1,1,23, ...

By the formula (8.29) for the coefficients c(n)j , we obtain an integral equiv-
alent formula Φn(1), valid for n ≥ 3, as follows:

Φn(1) =
ϕ(n)

∑
j=0

c(n)j

=
ϕ(n)

∑
j=0

2ϕ(n)

π

∫ π

0
Λn(t) · cos(ϕ(n)− 2j)tdt,

=
2ϕ(n)

π

∫ π

0
Λn(t) ·

[
ϕ(n)

∑
j=0

cos(ϕ(n)− 2j)t

]
dt

=
2ϕ(n)

π

∫ π

0
Λn(t)

sin(ϕ(n) + 1)t
sin t

dt. (8.32)
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The integral in (8.32) is not improper. Indeed, by de Moivre’s formula

cos(ϕ(n) + 1)t + i sin(ϕ(n) + 1)t = (cos t + i sin t)ϕ(n)+1 ,

separating the real and imaginary parts one can show that

cos(ϕ(n) + 1)t =
ϕ(n)/2

∑
j=0

[
(−1)j

(
ϕ(n) + 1

2j

)
(cos t)ϕ(n)−2j (sin t)2j

]
cos t,

sin(ϕ(n) + 1)t =
ϕ(n)/2

∑
j=0

[
(−1)j

(
ϕ(n) + 1

2j + 1

)
(cos t)ϕ(n)−2j (sin t)2j

]
sin t,

hence sin(ϕ(n)+1)t
sin t is in fact a polynomial in sin t and cos t.

Formula (8.32) can also be proved using the sum of cosines:

ϕ(n)

∑
j=0

cos(ϕ(n)− 2j)t · sin t =
ϕ(n)

∑
j=0

1
2
[sin(ϕ(n)− 2j + 1)t− sin(ϕ(n)− 2j− 1)t]

=
1
2
[sin(ϕ(n) + 1)t− sin(−ϕ(n)− 1)t]

= sin(ϕ(n) + 1)t.

The mid-term of Φn(z). The middle coefficients obtained for n ≥ 3 produce
the integer sequence A094754 in OEIS, which starts with the terms

1,0,1,−1,1,0,1,1,1,−1,1,−1,−1,0,1,−1,1,1, ...

These are also given by the integral formula

mn = c(n)ϕ(n)
2

=
2ϕ(n)

π

∫ π

0
Λn(t)dt. (8.33)

As Φn is reciprocal we have Φn(1) = 2a+mn, with a integer. By (8.31), Φn(1)
is odd if n is not a power of 2, in which case mn is also odd. Moreover, mn = 0
if and only if n = 2m for some m ≥ 2. By formula (8.33) we obtain∫ π

0
Λn(t)dt = 0, if and only if n = 2m, m ≥ 1.

While the terms of the sequence mn seem to be equal to −1, 0 or 1, other
negative and positive values appear. For example m385 = −3, m6545 = −5
and m7735 = −7, while m1155 = 3, m4785 = 5, and m11305 = 19. Some of these
values are mentioned in the paper of Dresden [92].
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This suggests that every odd integer may be the mid-coefficient of some
cyclotomic polynomial [20, Conjecture].

Alternate sum of coefficients Φn(−1). The following formula is known

Φn(−1) =


−2 if n = 1;
0 if n = 2;
p if n = 2pm;
1 otherwise,

(8.34)

where m≥ 1 is an integer. This is sequence A020513 in OEIS and starts with

−2,0,1,2,1,3,1,2,1,5,1,1,1,7,1,2,1,3,1,1,1,11,1,1,1,13, . . . .

From the formula (8.29) for the coefficients c(n)j , we obtain an integral
equivalent formula Φn(−1), valid for n ≥ 3, as follows.

Φn(−1) =
ϕ(n)

∑
j=0

c(n)j (−1)j =
ϕ(n)

∑
j=0

2ϕ(n)

π

∫ π

0
Λn(t)(−1)j cos(ϕ(n)− 2j)tdt,

=
2ϕ(n)

π

∫ π

0
Λn(t)

[
ϕ(n)

∑
j=0

(−1)j cos(ϕ(n)− 2j)t

]
dt

=
2ϕ(n)

π

∫ π

0
Λn(t)

cos(ϕ(n) + 1)t
cos t

dt. (8.35)

To prove the last identity we note that for a fixed j ∈ {0, . . . , ϕ(n)}, one has

(−1)j cos(ϕ(n)− 2j)t = cos [(ϕ(n)− 2j)t− jπ] = cos
[

ϕ(n)t− 2j
(

t +
π

2

)]
.

One can multiply this last expression by sin
(
t + π

2
)

and add the terms
cos
[
ϕ(n)t− 2j

(
t + π

2
)]
· sin

(
t + π

2
)
, j = 0, . . . , ϕ(n). Using the simple iden-

tities sin(x + π/2) = cos x, cos(x + kπ) = (−1)k cos x, k ∈Z one obtains

ϕ(n)

∑
j=0

(−1)j cos(ϕ(n)− 2j)t =
cos(ϕ(n) + 1)t

cos t
· 1 + (−1)ϕ(n)

2

=
cos(ϕ(n) + 1)t

cos t
,

since ϕ(n) is even for n ≥ 3.



8.7 The inverse cyclotomic polynomial 233

8.7 The inverse cyclotomic polynomial

In this section we discuss properties of a family of polynomials which are
closely related to the cyclotomic polynomials.

Definition 8.3 ([183]). For an integer n≥ 2, the n-th inverse cyclotomic poly-
nomial Ψn(z) is defined by

Ψn(z) = ∏
1≤k<n,gcd(k,n)>1

(
z− e

2kπi
n

)
=

xn − 1
Φn(z)

=
n−ϕ(n)

∑
j=0

d(n)j zj.

The roots of this monic polynomial are the non-primitive nth roots of unity,
and the degree is n− ϕ(n).

To fix the notation, from now on we will write d(n)j for the coefficient of zj

in the n-th inverse cyclotomic polynomial Ψn, where degΨn = n− ϕ(n).
The first inverse cyclotomic polynomials (discounting prime indices) are

Ψ1(z) = 1, Ψ4(z) = z2 − 1, Ψ6(z) = z4 + z3 − z− 1, Ψ8(z) = z4 − 1,

Ψ9(z) = z3 − 1, Ψ10(z) = z6 + z5 − z− 1, Ψ12(z) = z8 + z6 − z2 − 1,

Ψ14(z) = z8 + z7 − z− 1, Ψ15(z) = z7 + z6 + z5 − z2 − z− 1,

Ψ16(z) = z8 − 1, Ψ18(z) = z12 + z9 − z3 − 1, Ψ20(z) = z12 + z10 − z2 − 1,

Ψ21(z) = z9 + z8 + z7 − z2 − z− 1, Ψ22(z) = z12 + z11 − z2 − 1.

Proposition 8.3. The following properties hold:
1◦ If p is a prime and n = pα for α ≥ 1 then Ψn(z) = zpα−1 − 1.
2◦ For n = p1 · · · pk square-free, deg (Ψn) = p1 · · · pk − (p1 − 1) · · · (pk − 1).
3◦ If p < q are primes, then for n = pq one has

Ψn(z) =
(zp − 1) (zq − 1)

z− 1
= zp+q−1 + · · ·+ zq+1 − zp−1 − · · · − z2 − z− 1.

4◦ If p,q,r are different primes, then for n = pqr one has

Ψn(z) =
(zpq − 1)(zqr − 1)(zrp − 1)(z− 1)

(zp − 1)(zq − 1)(zr − 1)
.

5◦ Ψ2n(z) = (1− zn)Ψn(−z), if n is odd.
6◦ Ψpn(z) = Ψn(zp), if p | n.
7◦ Ψpn(z) = Ψn(zp)Φn(z), if p - n.

Proof. For 1◦ note that for this value of n, the only non-primitive n-th roots
of unity are the ones having order that divides pα − 1. These are the roots of
the polynomial zpα−1 − 1 and the conclusion follows.
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2◦ follows immediately from the fact that ϕ(n) = (p1 − 1) · · · (pk − 1).
Let us prove 3◦. The only non-primitive n-th roots of unity have orders

1, p or q. Hence, these are the roots of the polynomials zp − 1 and zq − 1,
respectively. As the root 1 appears in both polynomials we have that

Ψn(z) =
(zp − 1)(zq − 1)

z− 1
,

as required.
For 4◦, note that the non-primitive pqr-th roots of unity are the roots of

unity of order dividing pq, qr or rp. Denoting by Uk the set of roots of unity
which have order dividing k, using the Principle of Inclusion and Exclusion,
we deduce that

|Upq ∪Uqr ∪Urp| = |Upq|+ |Uqr|+ |Urp| − |Up| − |Uq| − |Ur|+ |U1|.

The elements of Upq ∪Uqr ∪Urp are the roots of Ψn. The conclusion follows
by identifying the roots of unity with the roots of the corresponding poly-
nomials.

To prove 5◦, one just observe that the non-primitive 2n-th roots of unity
have order dividing n or 2d, where d | n and d < n. The first ones are the
roots of 1− zn, whereas the second type can be found among the roots of
Ψn(−z). The statements 5◦ and 6◦ can be proved in a similar fashion. �

From the proposition above, we easily derive the following corollary.

Corollary 8.5. 1. If p,q are distinct primes, then the cyclotomic polynomial

Φpq(z) =
(zpq − 1)(z− 1)
(zp − 1)(zq − 1)

.

2. Moreover, if p,q,r are distinct primes, then the cyclotomic polynomial

Φpqr(z) =
(zpqr − 1)(zp − 1)(zq − 1)(zr − 1)
(zpq − 1)(zqr − 1)(zrp − 1)(z− 1)

.

8.7.1 The coefficients of Ψn

Since Ψn is the division of the monic polynomial zn − 1 and the cyclotomic
polynomial Φn, both have integer coefficients, it follows that Ψn is monic
with integer coefficients as well. As mentioned in the beginning of the sec-
tion, Ψn is intimately connected to the cyclotomic polynomial Φn. This sug-
gests that understanding the coefficients of Ψn is a challenging venture, as
any knowledge above the coefficients of Ψn could be transferred to knowl-
edge about the coefficients of Φn and vice-versa.
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Using the generalized binomial coefficient(
α

j

)
=

α(α− 1) · · · (α− j + 1)
j!

, α ∈R, j ∈N,

we establish the following formula, analogous to (8.15).

Theorem 8.11. For every m,n ∈N, n ≥ 1, the following formula holds

d(n)m = ∑
i1+2i2+...+mim=m

(−1)i1+···+im+1
(
−µ(n)

i1

)(
−µ(n/2)

i2

)
· · ·
(
−µ(n/m)

im

)
(8.36)

Proof. We make use of the infinite product formula established in (8.14),

namely Φn(z) =
∞
∏

d=1

(
1− zd

)µ(n/d)
. After observing that

Ψn(z) =
zn − 1
Φn(z)

= (zn − 1)
∞

∏
d=1

(1− zd)−µ(n/d)

= (zn − 1)
∞

∑
m=0

(
∑

i1+2i2+···+mim=m
(−1)i1+···+im

(
−µ(n)

i1

)(
−µ(n/2)

i2

)
· · ·
(
−µ(n/m)

im

))
zm,

the formula follows by identifying coefficients of zm on both sides. �

Let us emphasize how one can compute the first few coefficients of Ψn,
for every n ∈N∗ using the formula above.

• For m = 1, we have i1 = 1, hence d(n)1 = (−µ(n)
1 ) = −µ(n).

• For m = 2, the equation i1 + 2i2 = 2 has the solutions (i1, i2) = (2,0) and
(i1, i2) = (0,1), so one obtains

d(n)2 = −
(
−µ(n)

2

)
+

(
−µ(n/2)

1

)
= −1

2
µ(n)(µ(n) + 1)− µ(n/2).

• For m = 3, the solutions to (l1, l2, l3) of the equation l1 + 2l2 + 3l3 = 3 are
(3,0,0), (1,1,0) and (0,0,1), therefore one obtains

d(n)3 =

(
−µ(n)

3

)
−
(
−µ(n)

1

)(
−µ(n/2)

1

)
+

(
−µ(n/3)

1

)
= −1

2

(
µ(n)2 + µ(n)

)
− µ(n)µ(n/2)− µ(n/3),

where we have used again that µ3 = µ.
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• For m = 4, the solutions (l1, l2, l3, l4) of the equation l1 + 2l2 + 3l3 + 4l4 = 4
are (4,0,0,0), (2,1,0,0), (0,2,0,0), (1,0,1,0), (0,0,0,1), hence

d(n)4 = −
(
−µ(n)

4

)
+

(
−µ(n)

2

)(
−µ(n/2)

1

)
−
(
−µ(n)

1

)(
−µ(n/3)

1

)
+

+

(
−µ(n/2)

2

)
+

(
−µ(n/4)

1

)
= −µ(n)(µ(n) + 1)

2
− µ(n)(µ(n) + 1)

2
µ(n/2)− µ(n)µ(n/3)+

+
µ(n/2)(µ(n/2) + 1)

2
− µ(n/4),

where we have used the identity (8.20) to simplify the computations and
deduce that (−µ(n)

4 ) = (−µ(n)
2 ).

Remark. If one knows the first few coefficients d(n)k , one can directly com-

pute the coefficients c(n)k of the cyclotomic polynomial, for small values of k.
This can be achieved by identifying the coefficients in Φn(z) ·Ψn(z) = zn− 1.
This reduced to solving the linear system

c(n)0 d(n)0 = −1
c(n)0 d(n)1 + c(n)1 d(n)0 = 0
c(n)0 d(n)2 + c(n)1 d(n)1 + c((n)2 d(n)0 = 0

...

,

where the coefficients c(n)0 , c(n)1 , c(n)2 , . . . of Φn are the unknowns.
We use Newton’s identities for Ψn to find a recurrence relation for the co-

efficients d(n)k . Denote Pj the j-th symmetric power polynomial evaluated at
the ϕ(n) roots of Φn (primitive roots of unity) and P′j , for the j-th symmet-
ric power polynomial evaluated at the n − ϕ(n) roots of Ψn. Recall that in

Example 8.12 we had δj(n) =
n
∑

a=1

(
e2πi a

n

)j
, where δj(n) =

{
n if n | j
0 if n - j .

In our notation, the symmetric power sums polynomials satisfy the rela-
tion Pj + Pj′ = δj(n). But for j < n we have n - j, hence P′j = −Pj = −ρ(n, j),
where ρ denotes the Ramanujan sum (8.6). The polynomial Ψn is anti-
reciprocal, hence we have the relations

S′j = (−1)jd(n)n−ϕ(n)−j = (−1)j+1d(n)j , j = 1,2, . . . ,

where S′j is the evaluation of the j-th fundamental symmetric polynomial at
the n− ϕ(n) roots of Ψn. The explanation above implies that the following
recurrence holds.
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Theorem 8.12. The coefficients of Ψn satisfy the following recurrence relation in-
volving Ramanujan sums:

d(n)k =
1
k

[
−ρ(n,k) + ρ(n,k− 1)d(n)1 + · · ·+ ρ(n,1)d(n)k−1

]
(8.37)

Let us apply the theorem above to give a different way for computing the
first four coefficients d(n)k , for every n ∈N∗, recovering the results obtained
right after Theorem 8.11.

• For k = 1, we have d(n)1 = −ρ(n,1) = −µ(n).
• For k = 2, one obtains

d(n)2 =
1
2

[
−ρ(n,2) + ρ(n,1)d(n)1

]
= −1

2

[
µ(n) + 2µ (n/2) + µ2(n)

]
= −µ2(n) + µ(n)

2
− µ (n/2) .

• For k = 3, using the identity µ3 = µ, it follows that

d(n)3 =
1
3

[
−ρ(n,3) + ρ(n,2)d(n)1 + ρ(n,1)d(n)2

]
=

1
3
[−µ(n)− 3µ (n/3)− (µ(n) + 2µ (n/2))µ(n)+

+ µ(n)
(
−µ(n)2 + µ(n)

2
− µ (n/2)

)]
= −1

2

(
µ(n)2 + µ(n)

)
− µ(n)µ(n/2)− µ(n/3)

• For k = 4, using again the identity µ3 = µ we get

d(n)4 =
1
4

[
−ρ(n,4) + ρ(n,3)d(n)1 + ρ(n,2)d(n)2 + ρ(n,1)d(n)3

]
=

1
4
[−µ(n)− 2µ (n/2)− 4µ (n/4)− (µ(n) + 3µ (n/3))µ(n)+

+ (µ(n) + 2µ (n/2))
(

µ(n)2 − µ(n)
2

− µ (n/2)
)
+

+ µ(n)
(
−1

2

(
µ(n)2 + µ(n)

)
− µ(n)µ(n/2)− µ(n/3)

)]
= −µ(n)(µ(n) + 1)

2
− µ(n)(µ(n) + 1)

2
µ(n/2)− µ(n)µ(n/3)+

+
µ(n/2)(µ(n/2) + 1)

2
− µ(n/4).
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As in the case of cyclotomic polynomials, the recurrence relation 8.37
suggests that every coefficient d(n)k of Ψn is a polynomial with rational
coefficients in the variables given by the Ramanujan sums ρ(n,k), where
k = 1,2, . . . ,n− ϕ(n)− 1. This is illustrated in the following result, a direct
consequence of Theorem 7.3.

Theorem 8.13. We have

d(n)k = − ∑
l1+2l2+···+klk=k

ρ(n,1)l1

1l1 l1!
· ρ(n,2)l2

2l2 l2!
· · · ρ(n,k)lk

klk lk!
. (8.38)

In the proof, we have use the relations P′j = −ρ(n, j) and S′k = (−1)k+1d(n)k .

Let us compute the first four coefficients of Ψn, for every n ∈N∗, using
the formula (8.38).

• For k = 1, we have l1 = 1, hence d(n)1 = −ρ(n,1) = −µ(n).

• For k = 2, the equation i1 + 2i2 = 2 has the solutions (i1, i2) = (2,0) and
(i1, i2) = (0,1), so one obtains

d(n)2 = −1
2

ρ(n,1)2 − 1
2

ρ(n,2)

= −1
2

µ2(n)− 1
2
(µ(n) + 2µ(n/2))

= −1
2

µ(n)(µ(n) + 1)− µ(n/2).

• For k = 3, the solutions to (l1, l2, l3) of the equation l1 + 2l2 + 3l3 = 3 are
(3,0,0), (1,1,0) and (0,0,1), therefore one obtains

d(n)3 = −1
6

ρ(n,1)3 − 1
2

ρ(n,1)ρ(n,2)− 1
3

ρ(n,3)

= −1
6

µ3(n)− 1
2

µ(n) (µ(n) + 2µ(n/2))− 1
3
(µ(n) + 3µ(n/3))

= −1
2
(µ2(n) + µ(n))− µ(n)µ(n/2)− µ(n/3),

where we used the relation µ3 = µ.

• For k = 4, the solutions (l1, l2, l3, l4) of the equation l1 + 2l2 + 3l3 + 4l4 = 4
are (4,0,0,0), (2,1,0,0), (0,2,0,0), (1,0,1,0), (0,0,0,1), hence
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d(n)4 = − 1
24

ρ(n,1)4 − 1
4

ρ(n,1)2ρ(n,2)− 1
3

ρ(n,1)ρ(n,3)

− 1
8

ρ(n,2)2 − 1
4

ρ(n,4)

= − 1
24

µ4(n)− 1
4

µ2(n)(µ(n) + 2µ(n/2))2−

− 1
4
(µ(n) + 2µ(n/2) + 4µ(n/4))

= −µ(n)(µ(n) + 1)
2

− µ(n)(µ(n) + 1)
2

µ(n/2)− µ(n)µ(n/3)+

+
µ(n/2)(µ(n/2) + 1)

2
− µ(n/4).

In the relation above we used repeatedly the fact that µ3 = µ.

We point out the following direct corollary.

Corollary 8.6. For every n ∈ N∗ and every k ∈ {1,2, . . . ,n − ϕ(n)}, the anti-
cyclotomic coefficient d(n)k is a polynomial with rational coefficients in µ(n/d),
where d is a divisor of n. Moreover, the degree of µ(n/d) in every monomial can be
at most 2.

8.7.2 The integral formula for the coefficients of Ψn

Following the same process as the one used for cyclotomic polynomials,
similar integral formulae can be obtained for the coefficients of Ψn(z).

In this section we compute an integral formula for the coefficients of the
inverse cyclotomic polynomial Ψn(z) is defined by

Ψn(z) = ∏
1≤k≤n

gcd(k,n)>1

(
z− e

2kπi
n

)
=

xn − 1
Φn(z)

=
n−ϕ(n)

∑
j=0

d(n)j zj. (8.39)

The roots of this monic polynomial are the non-primitive nth roots of unity,
having degree n− ϕ(n) and integer coefficients d(n)j , j = 0,1, . . . ,n− ϕ(n).

The proof of the main result uses the following known identity involving
Euler’s totient function.

Lemma 8.4. Let n ≥ 3 be a positive integer. The following formula holds:

∑
1≤k≤n

gcd(k,n)>1

k =
n
2
(n + 1− ϕ(n)) . (8.40)
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Proof. Using Lemma 8.3, one can write

∑
1≤k≤n

gcd(k,n)>1

k =
n

∑
k=1

k− ∑
1≤k≤n

gcd(k,n)=1

k

=
n(n + 1)

2
− n

2
ϕ(n) =

n
2
(n− ϕ(n) + 1) .

For n is prime one has ϕ(n) = n− 1, hence the value of the sum is n. �

In order to get a unitary formula for d(n)j , we introduce the function

Γn(t) = ∏
1≤k≤n

gcd(k,n)>1

sin
(

t− kπ

n

)
. (8.41)

Clearly, for n = 1 or when n ≥ 2 is prime one obtains

Γn(t) = sin
(

t− nπ

n

)
= −sin t.

The first non-trivial values are n = 4 and n = 6 where we have

Γ4(t) = sin
(

t− 2π

4

)
sin
(

t− 4π

4

)
= sin

(
t− π

2

)
sin (t− π) = (−cos t) (−sin t) = sin t · cos t.

In what follows we assume n ≥ 3.

Theorem 8.14. The coefficients d(n)j , j = 0,1, . . . ,n − ϕ(n), of the inverse cyclo-
tomic polynomial Ψn(z) are given by the following integral formula:

d(n)j = (−1)n+1 2n−ϕ(n)

π

∫ π

0
Γn(t) · sin (n− ϕ(n)− 2j) tdt. (8.42)

Proof. Denoting ζn = cos 2π
n + i sin 2π

n and z = cos2t + i sin2t for t ∈ [0,2π],
k = 1, . . . ,n, the previous calculations showed that

z− ζk
n = 2i sin

(
t− kπ

n

)[
cos
(

t +
kπ

n

)
+ i sin

(
t +

kπ

n

)]
.

To simplify the notation we shall use cos t + i sin t by exp(ti).
By Lemma 8.4, for n ≥ 3, one can write the polynomial Ψn(z) in the form
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Ψn(z) = ∏
1≤k≤n

gcd(k,n)>1

(z− ζk
n)

= (2i)n−ϕ(n) ∏
1≤k≤n

gcd(k,n)>1

sin
(

t− kπ

n

)
exp

(
ti +

kπ

n
i
)

= (2i)n−ϕ(n)Γn(t)exp
(
[n− ϕ(n)] ti + [n− ϕ(n) + 1]

π

2
i
)

= (2i)n−ϕ(n)Γn(t) [cos (n− ϕ(n)t) + i sin (n− ϕ(n)t)] · in−ϕ(n)+1

= 2n−ϕ(n)(−1)n−ϕ(n)Γn(t) [cos (n− ϕ(n)t) + i sin (n− ϕ(n)t)] i

= (−2)n−ϕ(n)Γn(t) [cos (n− ϕ(n)t) + i sin (n− ϕ(n)t)] i,

where we have used that ϕ(n) is even for n ≥ 3, and that e
π
2 i = i.

For every j = 0,1, . . . , ϕ(n), one may write

d(n)j + ∑
k 6=j

d(n)k zk−j = z−j ∏
1≤k≤n

gcd(k,n)>1

(z− ζk
n)

= (−2)n−ϕ(n)Γn(t) (cos2jt− i sin2jt) [cos (n− ϕ(n)t) + i sin (n− ϕ(n)t)] i

= (−2)n−ϕ(n)Γn(t) [cos (n− ϕ(n)− 2j) t + i sin (n− ϕ(n)− 2j) t] i

= (−1)n+12n−ϕ(n)Γn(t) [sin (n− ϕ(n)− 2j) t− i cos (n− ϕ(n)− 2j) t] .

Integrating on the interval [0,2π] we obtain formula (8.42). This is true
since the integral of zk−j over [0,2π] vanishes whenever k 6= j. �

In addition, from the proof of the integral formula (8.42) it follows that∫ π

0
Γn(t)cos(n− ϕ(n)− 2j)tdt = 0, j = 0,1, . . . ,n− ϕ(n). (8.43)

8.7.3 Some applications of the integral formula

Using formula (8.42) we show that the inverse cyclotomic polynomial is an-
tipalindromic, and we derive compact integral formulae for the mid-term of
cyclotomic polynomials, the direct, and alternate sums of coefficients.

Reciprocal coefficients. These add to zero. Here we give an elegant proof
based on the integral formula (8.42).

Theorem 8.15. The inverse cyclotomic polynomial Ψn(z) is antipalindromic, that
is its coefficients satisfy the following antisymmetry relation

d(n)j = −d(n)n−ϕ(n)−j, j = 0,1, . . . ,n− ϕ(n). (8.44)
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Proof. Using formula (8.42), for every j = 0,1, . . . , ϕ(n), we have

d(n)n−ϕ(n)−j = (−1)n+1 2n−ϕ(n)

π

∫ π

0
Γn(t)sin (n− ϕ(n)− 2(n− ϕ(n)− j)) tdt

= (−1)n+1 2n−ϕ(n)

π

∫ π

0
Γn(t)sin (2j + ϕ(n)− n) tdt

= −(−1)n+1 2n−ϕ(n)

π

∫ π

0
Γn(t)sin (n− ϕ(n)− 2j) tdt

= −d(n)j .

This ends the proof. �

The mid-term coefficients of Ψn(z). Recall that for n ≥ 3 one has ϕ(n) is
even. Hence, if n is odd then n− ϕ(n) is odd, and there is no middle coeffi-
cient. If n is even, then the middle term coefficient, whose index is given by

the formula j =
n− ϕ(n)

2
.

Since n− ϕ(n)− 2j = 0, from formula (8.42) we obtain

d(n)n−ϕ(n)
2

= (−1)n+1 2n−ϕ(n)

π

∫ π

0
Γn(t)sin(0t)dt = 0.

Direct sum of coefficients Ψn(1). From the definition of Ψn(z), one obtains

Ψn(1) =
n−ϕ(n)

∑
j=0

d(n)j = 0.

This can also be checked by formula (8.44), which gives

Ψn(1) =
n−ϕ(n)

∑
j=0

d(n)j =

⌊
n−ϕ(n)

2

⌋
∑
j=0

(
d(n)j + d(n)n−ϕ(n)−j

)
.

Indeed, when n is odd this sum covers all the terms, while when n is even
the middle term obtained for j = n−ϕ(n)

2 is zero.
This is in contrast with the more complicated formula (8.31) for Φn(1).

Alternate sum of coefficients Ψn(−1). By the formula (8.34) for Φn(z) and
the definition of Ψn(z) one can write

Ψn(−1) =
(−1)n − 1

φn(−1)
=

{
0 if n is even
2 if n is odd,

(8.45)

where p is prime.
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From the formula (8.29) for the coefficients d(n)j , we obtain an integral
equivalent formula Ψn(−1), valid for n ≥ 3, as follows

Ψn(−1) =
n−ϕ(n)

∑
j=0

d(n)j (−1)j

= (−1)n+1
n−ϕ(n)

∑
j=0

2n−ϕ(n)

π

∫ π

0
Γn(t)(−1)j sin(n− ϕ(n)− 2j)tdt,

= (−1)n+1 2n−ϕ(n)

π

∫ π

0
Γn(t)

[
n−ϕ(n)

∑
j=0

(−1)j sin(n− ϕ(n)− 2j)t

]
dt

=
(

1 + (−1)n+1
) 2n−ϕ(n)−1

π

∫ π

0
Γn(t)

sin(n− ϕ(n) + 1)t
cos t

dt. (8.46)

To prove the last identity note that for a fixed j ∈ {0, . . . ,n− ϕ(n)}, one has

(−1)j sin(n− ϕ(n)− 2j)t = sin [(n− ϕ(n)− 2j)t− jπ]

= sin
[
(n− ϕ(n)) t− 2j

(
t +

π

2

)]
.

Multiplying this expression by 2sin
(
t + π

2
)

one obtains

2(−1)j sin(n− ϕ(n)− 2j)t · sin
(

t +
π

2

)
= cos

[
(n− ϕ(n)) t− (2j + 1)

(
t +

π

2

)]
− cos

[
(n− ϕ(n)) t− (2j− 1)

(
t +

π

2

)]
.

Summing for j ∈ {0, . . . ,n− ϕ(n)} we obtain the telescopic sum

n−ϕ(n)

∑
j=0

(−1)j · sin(n− ϕ(n)− 2j)t · sin
(

t +
π

2

)
= −1

2

[
cos
(
(n− ϕ(n) + 1)t +

π

2

)]
+

1
2

[
cos
(
−(n− ϕ(n) + 1)t− π

2
− (n− ϕ(n))π

)]
=

1
2

[
sin ((n− ϕ(n) + 1)t)− (−1)n−ϕ(n) sin ((n− ϕ(n) + 1)t)

]
,

=
1 + (−1)n−ϕ(n)+1

2
· sin(n− ϕ(n) + 1)t

cos t
.

where we used cos(x + kπ) = (−1)k cos x, k ∈ Z, cos(x + π/2) = −sin x,
cos(x− π/2) = sin x. The results follows, as ϕ(n) is even for n ≥ 3.
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If n≥ 3 is odd, the function f : [0,π] \ {π/2} 7→R defined by the formula

f (t) =
sin(n− ϕ(n) + 1)t

cos t

can be extended by continuity at π/2 as

lim
t→π/2

f (t) = (−1)
n−ϕ(n)−1

2 (n− ϕ(n) + 1) .

Hence, we obtain the following result.

Corollary 8.7. If n ≥ 3 is odd, then∫ π

0
Γn(t)

sin(n− ϕ(n) + 1)t
cos t

dt =
π

2n−ϕ(n)−1
.



Chapter 9
Special Polynomials and their Coefficients

In this chapter we investigate some classes of polynomials defined by fac-
torization, whose roots are situated on the unit circle with possible multi-
plicities. For these polynomials we establish integral formulae for the coef-
ficients, which are useful in the study of certain asymptotic properties. We
also study recurrence relations, connections to other classical polynomials,
or associated integer sequences, recently added to the Online Encyclopedia
of Integer Sequences (OEIS).

In Section 9.1 we define and study a general family of polynomials de-
pending on an integer sequence m1, . . . ,mn, . . . , and on a sequence of com-
plex numbers z1, . . . ,zn, . . . of modulus one [20], for which we derive an in-
tegral formula for the coefficients.

In Section 9.2 we discuss some key results concerning the cyclotomic
polynomials and their coefficients. These have numerous applications in
discrete mathematics and number theory. The integral formulae for the co-
efficients of cyclotomic obtained in [20], are used to prove some classical
results, or to study formulae for the direct or alternate sums of coefficients.

Section 9.3 is dedicated to the polygonal polynomials [17], which have
applications in the study of integer partitions. We first present integral for-
mulae and recurrence relations for the coefficients, then highlight combina-
torial interpretations and connections to the Mahonian polynomials.

In Sections 9.4 and 9.5 are defined and investigated the extended cyclo-
tomic polynomials, and the extended polygonal-type polynomials, respec-
tively. For these polynomials we present integral formulae for the coeffi-
cients, links to partitions and some integer sequences.

Section 9.6 concerns the study of the multinomial, Gaussian and Cata-
lan polynomials, based on [18]. The following two sections are dedicated to
the extended cyclotomic, and extended polygonal-type polynomials, intro-
duced in [19]. All these polynomials are recovered as particular instances of
the general family of polynomials presented in Section 9.1.

245
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9.1 A general class of polynomials

In this section we introduce a class of polynomials defined by an integer se-
quence m1, . . . ,mn, . . . , and a sequence z1, . . . ,zn, . . . , of complex numbers of
modulus one, which recovers cyclotomic, polygonal, and multinomial poly-
nomials as special cases.

9.1.1 Definition and basic properties

Consider the positive integers n, m1, . . . ,mn, and the complex numbers
z1, . . . ,zn with |z1| = · · · = |zn| = 1. We define the polynomial

Fz1,...,zn
m1,...,mn(z) =

n

∏
k=1

(zmk − zk). (9.1)

Clearly, the degree of Fz1,...,zn
m1,...,mn(z) is m1 + · · ·+ mn. While this polynomial is

factorized as a product of factors z− ζ, where |ζ| = 1, this form is not prac-
tical. The product of absolute values of the roots is one, hence the Mahler
measure of Fz1,...,zn

m1,...,mn is 1. An interesting and challenging problem is to find
reasonable formulae for the coefficients after multiplication.

Numerous interesting polynomials are obtained for particular choices of
the sequences m1, . . . ,mn, . . . and z1, . . . ,zn, . . . . Some of them are explored in
some detail throughout this chapter.

9.1.2 Integral formulae for the coefficients

In what follows we obtain an integral formula for the coefficients of Fz1,...,zn
m1,...,mn .

The method we use is a special case of the Cauchy integral formula (see [66]),
adapted for complex polynomials, where the integration curve is the unit
circle (see [19]). Denote zk = cosαk + i sinαk, k = 1, . . . ,n, α = α1 + · · ·+ αn,
m = m1 + · · ·+ mn, and consider z = cos2t + i sin2t for t ∈ [0,π].

To get a unified formula for the coefficients of the polynomial (9.1), it is
useful to introduce the function

Λ(t;m1, . . . ,mn;α1, . . . ,αn) =
n

∏
k=1

sin
(

mkt− αk
2

)
, t ∈ [0,π]. (9.2)

For each k = 1, . . . ,n, by computations involving Euler’s exponential no-
tation of complex numbers in polar form, we obtain:
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zmk − zk = (cos2mkt− cosαk) + i (sin2mkt− sinαk)

= 2i sin
(

mkt− αk
2

)
ei(mkt+ αk

2 ). (9.3)

Writing the polynomial Fz1,...,zn
m1,...,mn in algebraic form, it follows that

Fz1,...,zn
m1,...,mn(z) =

m

∑
j=0

Cjzj =
n

∏
k=1

(zmk − zk)

= (2i)n
n

∏
k=1

sin
(

mkt− αk
2

)
ei(mkt+ αk

2 )

= (2i)nΛ(t;m1, . . . ,mn;α1, . . . ,αn)ei(mt+ α
2 ). (9.4)

Using the multiplication of complex numbers in polar form we deduce

Cj + ∑
k 6=j

Ckzk−j = z−j
n

∏
k=1

(zmk − zk)

= z−j(2i)nΛ(t;m1, . . . ,mn;α1, . . . ,αn)ei(mt+ α
2 )

= (2i)nΛ(t;m1, . . . ,mn;α1, . . . ,αn)ei((m−2j)t+ α
2 ).

Integrating the above relation over [0,π], we get the following result.

Theorem 9.1. (1) The coefficients of polynomial Fz1,...,zn
m1,...,mn are given by

Cj =
(2i)n

π

∫ π

0
Λ(t;m1, . . . ,mn;α1, . . . ,αn)ei((m−2j)t+ α

2 )dt. (9.5)

(2) If the coefficient Cj is a real number, then it is given by
(−1)

n
2 2n

π

∫ π
0 Λ(t;m1, . . . ,mn;α1, . . . ,αn)cos

(
(m− 2j)t + α

2
)

dt if n is even
(−1)

n+1
2 2n

π

∫ π
0 Λ(t;m1, . . . ,mn;α1, . . . ,αn)sin

(
(m− 2j)t + α

2
)

dt if n is odd.

9.2 Polygonal polynomials

Here we explore properties of the polygonal polynomials Pn defined in [17].
A general framework based on the Cauchy’s integral formula (Section 5.3)
and applications to the study of k-partitions of multisets was given in [19].
We then study the coefficients of Pn, for which we establish a recursive for-
mula , we deduce an exact integral formula and give a combinatorial inter-
pretation. We then investigate connections to the Mahonian polynomials Qn
and present related integer sequences.
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9.2.1 Definition and basic properties

The n-th polygonal polynomial was defined in [18], by

Pn(z) = (z− 1)(z2 − 1) · · · (zn − 1) =

n(n+1)
2

∑
j=0

c(n)j zj. (9.6)

The roots of Pn are the complex coordinates of the vertices, with repeti-
tions, of the regular k-gons centered in the origin, and having 1 as a vertex,
k = 1, . . . ,n, which justifies the name. These polynomials are closely linked
to Euler’s famous pentagonal number theorem concerning the infinite ex-
pansion (1− x)(1− x2)(1− x3) · · ·= ∑∞

k=−∞ (−1)k xk(3k−1)/2, where |x|< 1,
and the exponents are called (generalised) pentagonal numbers [37].

We recall that zn − 1 = ∏d|n Φd(z), hence the polynomial Pn can be de-
composed as product of cyclotomic polynomials

Pn(z) =
n

∏
k=1

∏
d|k

Φd(z). (9.7)

As every cyclotomic polynomial is irreducible over Z ([133], Thm. 1, p. 195),
the polynomial Pn has exactly ν(n) = ∑n

k=1 τ(k) factors irreducible over Z,
where τ(k) denotes the number of divisors of the positive integer k.

While the polynomial Pn seems simple, it exhibits deep algebraic, arith-
metic and combinatorial properties. Its natural companion is the Mahonian
polynomial Qn defined in (9.16), with a key role in the theory of partitions.

9.2.1.1 Palindromicity of the coefficients of Pn

Recall that a polynomial f (z) = a0 + a1z + · · ·+ amzm of degree m is called

• palindromic (reciprocal) if f (z) = zm f
(

1
z

)
, i.e., aj = am−j, j = 0, . . . ,m;

• antipalindromic (antireciprocal) if f (z) = −zm f
(

1
z

)
, i.e., aj = −am−j;

• unimodal if the sequence of coefficients is unimodal, i.e., there is an inte-
ger t (called mode), with a1 ≤ a2 ≤ · · · ≤ at and at ≥ at+1 ≥ · · · ≥ am.

Notice that

Pn(z) = (−1)nz
n(n+1)

2 Pn

(
1
z

)
,

hence Pn is palindromic if n even, i.e., c(n)j = c(n)n(n+1)
2 −j

, j = 0, . . . , n(n+1)
2 , while

Pn is antipalindromic for n odd, i.e., c(n)j = −c(n)n(n+1)
2 −j

, j = 0, . . . , n(n+1)
2 .



9.2 Polygonal polynomials 249

9.2.2 A recursive formula for coefficients

The coefficients of Pn can be obtained recursively, from

Pn(z) =
n

∏
k=1

(zk − 1) = Pn−1(z) (zn − 1) .

Writing Pn and Pn−1 explicitly, one obtains

Pn(z) =

n(n+1)
2

∑
j=0

c(n)j zj

=

 n(n−1)
2

∑
j=0

c(n−1)
j zj

 (zn − 1) .

This indicates the following formula:

c(n)j =


−c(n−1)

j if j ∈ {0, . . . ,n− 1} ,

c(n−1)
j−n − c(n−1)

j if j ∈
{

n, . . . , n(n−1)
2

}
,

c(n−1)
j if j ∈

{
n(n−1)

2 + 1, . . . , n(n+1)
2

}
.

(9.8)

Using the recurrence (9.8), we obtain the numbers in Table 9.1.
The values of the coefficients c(n)j correspond to the sequence (−1)nT(n, j)

indexed A231599 in the Online Encyclopedia of Integer Sequences [190].

9.2.3 Integral formulae for the coefficients

Setting mk = k and zk = 1 for k = 1, . . . ,n in the polynomial (9.28), we obtain
the polygonal polynomials Pn given in (9.6), investigated in our paper [18].

Also, the formula (9.2) where αk = 0, k = 1, . . . ,n is simply denoted by

Λ(t;1, . . . ,n) =
n

∏
k=1

sinkt, t ∈ [0,π], (9.9)

while the degree of the polynomial Pn is

m = 1 + · · ·+ n =
n(n + 1)

2
.
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c(1)j -1, 1
P1(z) −1 + z
c(2)j 1, -1, -1, 1

P2(z) 1− z− z2 + z3

c(3)j -1, 1, 1, 0, -1, -1, 1
P3(z) −1 + z + z2 − z4 − z5 + z6

c(4)j 1, -1, -1 , 0, 0, 2 , 0, 0, -1 , -1, 1
P4(z) 1− z− z2 + 2z5 − z8 − z9 + z10

c(5)j -1, 1, 1, 0, 0, -1, -1, -1, 1, 1, 1, 0, 0, -1, -1, 1
P5(z) −1 + z + z2 − z5 − z6 − z7 + z8 + z9 + z10 − z13 − z14 + z15

c(6)j 1, -1, -1, 0, 0, 1, 0, 2, 0, -1, -1, -1, -1, 0, 2, 0, 1, 0, 0, -1, -1, 1
P6(z) 1− z− z2 + z5 + 2z7 − z9 − z10 − z11 − z12 + 2z14 + z16 − z19 − z20 + z21

c(7)j -1, 1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 2, 0, 0, 0, -2, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, -1, 1
P7(z) −1 + z + z2 − z5 − z7 − z8 + z10 + z11 + 2z12 − 2z16 − z17 − z18 + z20+

+z21 + z23 − z26 − z27 + z28

Table 9.1 Polynomials Pn and their coefficients for n = 1,2,3,4,5,6,7.

By applying the results in Theorem 9.1 (2), it follows the integral formula

c(n)j =
2n

π

∫ π

0
cos
(

n(n + 1)− 4j
2

t +
nπ

2

)
sin tsin2t · · ·sinntdt (9.10)

=


(−1)

n
2 2n

π

∫ π
0 cos

(
n(n+1)−4j

2 t
)

sin tsin2t · · ·sinntdt if n is even

(−1)
n+1

2 2n

π

∫ π
0 sin

(
n(n+1)−4j

2 t
)

sin tsin2t · · ·sinntdt if n is odd.

9.2.4 The combinatorial interpretation of the coefficients

The calculation of these polynomial coefficients involves tuples with fixed
sum. Let s,k,n be positive integers. We denote by α(s,k,n) the number of
integer s-tuples (i1, . . . , is) with the properties

i1 + i2 + · · ·+ is = k, 1≤ i1 < i2 < · · · < is ≤ n. (9.11)

The link with the coefficients c(n)j is given in the following theorem.

Theorem 9.2. The following formula holds:

c(n)k = (−1)n−1 (α(1,k,n)− α(2,k,n) + α(3,k,n)− · · · ) . (9.12)
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Proof. The coefficient c(n)k of zk in the expansion (z− 1)(z2 − 1) · · · (zn − 1)
involves s distinct terms chosen from the set {1, . . . ,n}with the property that
their sum is k, and also n− s terms equal to (−1), for s = 0, . . . ,n. Explicitly,
c(n)k is given by the expression

c(n)k = (−1)n−1α(1,k,n) + (−1)n−2α(2,k,n) + (−1)n−3α(3,k,n) + · · · .

This ends the proof. �

Clearly, α(s,k,n) is an increasing function with n. When n is large enough,
the function is stationary to a value independent of n, denoted by α(s,k).

The following result links the polynomial Ps to α(s,k).

Theorem 9.3. If s is a positive integer, then for all z ∈ C such that |z|< 1 we have

(−1)sz
s(s+1)

2

Ps(z)
= lim

n→∞ ∑
1≤i1<i2<···<is≤n

zi1+i2+···+is =
∞

∑
k=0

α(s,k)zk. (9.13)

Proof. Clearly, we have

lim
n→∞ ∑

1≤i1<···<is≤n
zi1+···+is = ∑

1≤i1<···<is

zi1+···+is

= ∑
1≤i1<···<is−1

zi1+···+is−1 · zis−1+1

1− z
=

z
1− z ∑

1≤i1<···<is−1

zi1+···+2is−1

=
z

1− z ∑
1≤i1<···<is−2

zi1+···+is−2 · z2(is−2+1)

1− z2

=
z1+2

(1− z)(1− z2) ∑
1≤i1<···<is−2

zi1+···+3is−2 = · · ·

=
z1+···+(s−1)

(1− z) · · · (1− zs−1) ∑
1≤i1

zsi1 =
z

s(s+1)
2

(1− z) · · · (1− zs)

=
(−1)sz

s(s+1)
2

Ps(z)
.

�
Notice also that by (9.13) it follows that

(−1)sz
s(s+1)

2 = Ps(z)

(
∞

∑
k=0

α(s,k)zk

)
=

 s(s+1)
2

∑
j=0

c(s)j zj

( ∞

∑
k=0

α(s,k)zk

)
,

hence we obtain the following result.
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Corollary 9.1. Considering that c(s)j = 0 for j > s(s+1)
2 , we have

n

∑
j=0

α(s,n− j)c(s)j = (−1)sδ
n, s(s+1)

2
, (9.14)

where δu,v denotes the Kronecker symbol.

Corollary 9.2. Let β(s,k) be the number of distinct solutions to the equation

j1 + 2j2 + · · ·+ sjs = k, (9.15)

such that the numbers j1, j2, . . . , js ≥ 1 may be equal. We have α(s,k) = β(s,k).

Proof. Indeed, for j ∈ {1, . . . , s} and |z| < 1 one has
zj

1− zj = zj + z2j + · · · .
By taking the product over j ∈ {1, . . . , s}, one obtains

(−1)sz
s(s+1)

2

Ps(z)
= (z + z2 + · · · ) · · · (zs + z2s + · · · ) =

∞

∑
k=0

β(s,k)zk.

The result follows by (9.13). Clearly, α(s,k) = β(s,k) = 0 for 0≤ k≤ s(s+1)
2 − 1.

Results counting the ordered partitions of the integer k into s parts each of
size at least 0 but no larger than n have been obtained in [201] and [221]. �

9.2.5 The connection to the Mahonian polynomial Qn

The polygonal polynomial can be written as Pn(z) = (z− 1)nQn(z), where

Qn(z) = (z + 1) · · · (zn−1 + zn−2 + · · ·+ z + 1) =

(n−1)n
2

∑
j=0

a(n)j zj. (9.16)

We call Qn the Mahonian polynomial, which presents interest in its own
right and has been investigated in many papers (see, e.g., [171] or [184]). The
coefficients a(n)k are called Mahonian numbers, representing the number of
permutations of {1, . . . ,n} with k inversions, indexed as A008302 in OEIS.

If zk = zk1 · · · zkn−1 with zkj coming from the factor 1+ z+ · · ·+ zj in (9.16),
then an interpretation of the coefficient a(n)k is the number of partitions of the
integer k = k1 + · · ·+ kn−1 , with the constraints 0 ≤ k j ≤ j, 1 ≤ j ≤ n− 1.
These numbers are related to the Mahonian distribution, which interest-
ingly, are used in the mixing of diffusing particles [59].
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a(2)j 1, 1
Q2(z) 1 + z

a(3)j 1, 2, 2, 1
Q3(z) 1 + 2z + 2z2 + z3

a(4)j 1, 3, 5, 6, 5, 3, 1
Q4(z) 1 + 3z + 5z2 + 6z3 + 5z4 + 3z5 + z6

a(5)j 1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1
Q5(z) 1 + 4z + 9z2 + 15z3 + 20z4 + 22z5 + 20z6 + 15z8 + 9z8 + 4z9 + z10

a(6)j 1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1
Q6(z) 1 + 5z + 14z2 + 29z3 + 49z4 + 71z5 + 90z6 + 101z7 + 101z8 + 90z9+

71z10 + 49z11 + 29z12 + 14z13 + 5z14 + z15

Table 9.2 Polynomials Qn and their coefficients for n = 2,3,4,5,6.

For n = 10 the following formula is obtained for the polynomial Q10:

Q10(z) = 1 + 9z + 44z2 + 155z3 + 440z4 + 1068z5 + 2298z6 + 4489z7+

+ 8095z8 + 13640z9 + 21670z10 + 32683z11 + 47043z12+

+ 64889z13 + 86054z14 + 110010z15 + 135853z16 + 162337z17+

+ 187959z18 + 211089z19 + 230131z20 + 243694z21 + 250749z22+

+ 250749z23 + 243694z24 + 230131z25 + 211089z26 + 187959z27+

+ 162337z28 + 135853z29110010z30 + 86054z31 + 64889z32+

+ 47043z33 + 32683z34 + 21670z35 + 13640z36 + 8095z37+

+ 4489z38 + 2298z39 + 1068z40 + 440z41+

+ 155z42 + 44z43 + 9z44 + z45.

We give a recursive formula for a(n)j , depending on the coefficients of Qj.

Theorem 9.4. Let n ≥ k + 1. The coefficient a(n)k is given by the recursive formula

a(n)k =
k

∑
j=0

(
n− 1− j

k− j

)
a(k)j . (9.17)

Proof. Clearly, a(n)k is the coefficient of zk in Qk(z)(1 + z + · · ·+ zk)n−k, and

(1 + z + · · ·+ zk)n−k =

(
1− zk+1

1− z

)n−k

=
(

1− zk+1
)n−k

(
1

1− z

)n−k
.
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For |z| < 1, the geometric series summation yields

1
1− z

= 1 + z + z2 + · · ·+ zs + · · · .

By differentiating (n− k− 1) times one obtains

(n− k− 1)!
(

1
1− z

)n−k
=

∞

∑
s=0

(s + 1)(s + 2) · · · (s + n− k− 1)zs,

hence(
1

1− z

)n−k
=

∞

∑
s=0

(s + 1) · · · (s + n− k− 1)
(n− k− 1)!

zs =
∞

∑
s=0

(
s + n− 1− k

s

)
zs.

The coefficient of zk in k(k−1)
2

∑
j=0

a(k)j

(1− zk+1
)n−k

(
1

1− z

)n−k
,

is then given by

a(n)k =
k

∑
s=0

a(k)k−s

(
s + n− k− 1

s

)
=

k

∑
j=0

a(k)j

(
n− j− 1

k− j

)
.

This ends the proof. �

Example. Clearly, a(n)0 = 1 and a(n)1 = n− 1. By Theorem 9.4:

• k = 2: For n ≥ 3 we have

a(n)2 =

(
n− 1

2

)
a(2)0 +

(
n− 2

1

)
a(2)1 +

(
n− 3

0

)
a(2)2

(n− 2)(n + 1)
2

;

• k = 3: For n ≥ 4 we have

a(n)3 =

(
n− 1

3

)
a(3)0 +

(
n− 2

2

)
a(3)1 +

(
n− 3

1

)
a(3)2 +

(
n− 4

0

)
a(3)3

=
n(n2 − 7)

6
;

• k = 4: For n ≥ 5 we have
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a(n)4 =

(
n− 1

4

)
a(4)0 +

(
n− 2

3

)
a(4)1 +

(
n− 3

2

)
a(4)2 +

(
n− 4

1

)
a(4)3

+

(
n− 5

0

)
a(4)4 =

n(n + 1)(n2 + n− 14)
24

;

• k = 5: For n ≥ 6 we have

a(n)5 =

(
n− 1

5

)
a(5)0 +

(
n− 2

4

)
a(5)1 +

(
n− 3

3

)
a(5)2 +

+

(
n− 4

2

)
a(5)3 +

(
n− 5

1

)
a(5)4 +

(
n− 6

0

)
a(5)5

=
1

120
(n− 1)(n + 6)(n3 − 9n− 20);

• k = 6: For n ≥ 7 we have

a(n)6 =
1

720
n
(

n5 + 9n4 − 5n3 − 165n2 − 356n + 516
)

.

For n = 10, a(10)
5 = 1068 and a(10)

6 = 2298, confirming the values of Q10.

The coefficients of Qn can also be obtained recursively, using

Qn(z) = Qn−1(z)
(

zn−1 + · · ·+ z + 1
)

. (9.18)

Using the coefficients of Qn and Qn−1, one obtains

Qn(z) =

(n−1)n
2

∑
j=0

a(n)j zj =

 (n−2)(n−1)
2

∑
j=0

a(n−1)
j zj

(zn−1 + · · ·+ z + 1
)

. (9.19)

This naturally leads to the next result.

Proposition 9.1. The following formula holds:

a(n)j =


a(n−1)

j + · · ·+ a(n−1)
0 if j ∈ {0, . . . ,n− 1} ,

a(n−1)
j + · · ·+ a(n−1)

j−(n−1) if j ∈
{

n, . . . , n(n−1)
2

}
.

(9.20)

A polynomial is called Λ-polynomial, if it is both palindromic and uni-
modal with nonnegative coefficients. It is known that the product of two or
more Λ-polynomials is also a Λ-polynomial [11]. Since Qn is a product of
the Λ-polynomials z + 1, z2 + z + 1, . . . , zn−1 + · · ·+ z + 1, it follows that Qn
is a Λ-polynomial. This property can be seen in Table 9.1. A direct proof of
the unimodality of Qn was given in [18, Proposition 2.2].
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By the definition of Qn, we obtain another interpretation of the coeffi-
cients of polynomial Pn, in terms of Kandall-Mann numbers. Indeed, from

Pn(z) =
[

zn −
(

n
1

)
zn−1 +

(
n
2

)
zn−2 − · · ·+ (−1)n

(
n
n

)] (n−1)n
2

∑
j=0

a(n)j zj

 ,

one obtains a link between the coefficients of the polynomial Pn and Qn.

Theorem 9.5. The following formula holds

c(n)j =


(−1)n

(
a(n)j − a(n)j−1(

n
1) + · · ·+ (−1)ja(n)0 (n

j)
)

j ∈ {0, . . . ,n− 1} ,

(−1)n
(

a(n)j − a(n)j−1(
n
1) + · · ·+ (−1)na(n)j−n(

n
n)
)

j ∈
{

n, . . . , n(n−1)
2

}
.

Example 9.1. Using Theorem 9.5 for j = 1, . . . ,5 and n ≥ j + 1 we obtain
c(n)0 = (−1)n,

c(n)1 = (−1)n(a(n)1 − a(n)0 (n
1)) = (−1)n ((n− 1)− n) = (−1)n+1,

c(n)2 = (−1)n(a(n)2 − a(n)1 (n
1) + a(n)0 (n

2)) = (−1)n+1,

c(n)3 = (−1)n(a(n)3 − a(n)2 (n
1) + a(n)1 (n

2)− a(n)0 (n
3)) = 0,

c(n)4 = (−1)n(a(n)4 − a(n)3 (n
1) + a(n)2 (n

2)− a(n)1 (n
3) + a(n)0 (n

4)) = 0,

c(n)5 = (−1)n(a(n)5 − a(n)4 (n
1) + a(n)3 (n

2)− a(n)2 (n
3) + a(n)1 (n

4)− a(n)0 (n
5)) = (−1)n.

9.2.6 Some related integer sequences

Here we examine some integer sequences related to the coefficients of the
polynomials Pn and Qn. We also conjecture that every integer n can be a coef-
ficient of some polynomial Pm (property known to hold for cyclotomic poly-
nomials [220]), the result being confirmed numerically for the first 105 num-
bers. We also present some some new integer sequences: A301703, A301704,
and A301705, recently added by the authors to the OEIS.

9.2.6.1 The number of distinct roots of Pn

The number of distinct roots of Pn is given by

A(n) = ϕ(1) + ϕ(2) + · · ·+ ϕ(n). (9.21)

Indeed, by (9.6) one has Pn+1(z) = Pn(z)(zn+1− 1). The new roots added by
zn+1 − 1 to the set of roots of Pn, are those given by the primitive roots of
order n + 1, whose number is ϕ(n + 1). The result follows by induction.
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The sequence A(n) is indexed as A002088 in the OEIS, starting with:

1,2,4,6,10,12,18,22,28,32,42,46,58,64,72,80,96,102,120,128,140, . . . .

The asymptotic formula for A(n) is given in [37, Theorem 3.7, page 72]:

A(n) ∼ 3n2

π2 + O(n logn).

Proposition 9.2. Let 1 ≤ k ≤ n be an integer. If zp,k = e2πi p
k is a k-th primitive

root, then the multiplicity of root zp,k in the polynomial Pn is
⌊

n
k

⌋
. Consequently,

one recovers the identity

n

∑
k=1

ϕ(k)
⌊n

k

⌋
=

n(n + 1)
2

.

Proof. The root zp,k appears for the first time in polynomial Pk from the
factor zk − 1. Each of the ϕ(k) roots appears as a non-primitive root of every
multiple of k smaller than n.

9.2.6.2 The middle coefficients of Pn and Qn

Formula (9.10) gives information into the sequence of middle terms. Denote
by m =

⌊
n(n+1)

4

⌋
.

• If n = 4k, then for m = n(n+1)
4 we have cos

(
n(n+1)−4m

2 t
)
= 1 and

c(n)m =
2n

π

∫ π

0
sin tsin2t · · ·sinntdt. (9.22)

This sequence recovers A269298 in OEIS, having the starting values

2,2,4,6,8,16,28,50,100,196,388,786,1600,3280,6780,14060,29280, . . . .

• If n = 4k + 1, then n(n + 1)− 4m = 2 and sin
(

n(n+1)−4m
2 t

)
= sin t, hence

c(n)m = −2n

π

∫ π

0
sin2 tsin2t · · ·sinntdt = −c(n)m+1. (9.23)

The sequence of opposite terms is not currently indexed in OEIS:

1,1,1,1,2,2,3,4,6,10,17,28,52,94,176,339,651,1268,2505,4965,9916, . . . .

• If n = 4k + 2, then n(n + 1)− 4m = 2 and cos
(

n(n+1)−4m
2 t

)
= cos t, hence
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c(n)m = −2n

π

∫ π

0
cos tsin tsin2t · · ·sinntdt = c(n)m+1. (9.24)

The sequence of opposite terms is not currently indexed in OEIS:

1,1,2,3,5,10,19,34,68,135,269,544,1111,2274,4694,9729,20237, . . . .

• For n = 4k + 3, we have m = n(n+1)
4 , so sin

(
n(n+1)−4m

2 t
)
= 0 and c(n)m = 0.

Conjecture 1. Let n be an integer and m = b n(n+1)
4 c. The middle coefficient c(n)m is

• positive for n = 4k (mentioned in A231599, without a proof);
• negative for n = 4k + 1 and n = 4k + 2.

The sequence of middle coefficients of Qn gives the Kendall-Mann num-
bers A000140 in OEIS, representing the number of permutations of the set
{1, . . . ,n} having the maximum number of inversions. The first terms are:

1,1,2,6,22,101,573,3836,29228,250749,2409581,25598186,296643390, . . . .

The asymptotic behavior of this sequence was conjectured in A000140.
Conjecture 2. Let n be an integer and m =

⌊
n(n−1)

4

⌋
. Then the sequence of middle

coefficients a(n)m of Qn satisfies the asymptotic formula

a(n)m ∼ 6nn−1

en .

We are not aware of the existence of any proof at the moment.

9.2.6.3 First occurrence of n as a coefficient of a polygonal polynomial

In [220], Suzuki proved that every integer n is a coefficient for some cyclo-
tomic polynomial. We conjecture a similar result for polygonal polynomials.

Conjecture 3. Every integer n is a coefficient of some polygonal polynomial.

Notice that 1 is a coefficient of P1, while 2 first appears as a coefficient in
P4. For an integer n ≥ 0, the sequence a(n) defined by the smallest number
m for which n is a coefficient of Pm produces sequence A301701, recently
added by the authors to OEIS.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 . . .
a(n) 3 1 4 10 12 17 16 19 20 22 22 23 24 25 25 25 24 26 26 28 . . .

The conjecture was recently checked for the first 105 integers.
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9.2.6.4 Number of non-zero terms of Pn

The sequence of non-zero coefficients of Pn is indexed as A086781 in OEIS
and starts with the terms

1,2,4,6,7,12,14,18,25,32,36,42,53,68,64,84,97,108,126,146,161,170, . . . .

Recently, we have added the sequences below to the OEIS.

• A301703, representing the number of positive coefficients of Pn:

1,2,3,3,6,6,9,13,16,18,21,27,34,32,42,47,54,62,73,79,85,96,104,113, . . . .

• A301704, representing the number of negative coefficients of Pn:

1,2,3,4,6,8,9,12,16,18,21,26,34,32,42,50,54,64,73,82,85,96,104,116, . . . .

• A301705, representing the number of zero coefficients of Pn:

0,0,1,4,4,8,11,12,14,20,25,26,24,42,37,40,46,46,45,50,62,62,69,72, . . . .

9.3 Extended cyclotomic polynomials

Let zk = ζk, k = 1, . . . , ϕ(n), be the n-th primitive roots of unity. These can
also be indexed as powers of the first primitive root ζ1 = cos 2π

n + i sin 2π
n ,

i.e., ζ
j
1, with 1≤ j ≤ n− 1 and gcd(j,n) = 1.

The extended cyclotomic polynomial of degree m1 + · · ·+ mϕ(n) is

Φm1,...,mϕ(n)(z) =
ϕ(n)

∏
k=1

(zmk − ζk) = ∏
1≤j≤n−1

gcd(j,n)=1

(zm̃j − ζ
j
1), (9.25)

where for k = 1, . . . , ϕ(n), we have mk = m̃j, with j being the k-th positive
integer relatively prime with n, with 1≤ j ≤ n− 1.

The coefficients of Φm1,...,mϕ(n) , are generally complex. For example, for

n = 3, ζ = cos 2π
3 + i sin 2π

3 , m1 = 2 and m2 = 3, we obtain the polynomial

Φ2,3(z) = (z2 − ζ)(z3 − ζ2) = z5 − ζz3 − ζ2z2 + 1.
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9.3.1 Basic properties

For m1 = · · ·= mϕ(n) = 1 we obtain the classical cyclotomic polynomials de-
fined in (8.10), i.e., we have Φ1,...,1 = Φn. It is well known that the coefficients

c(n)j , j = 0, . . . , ϕ(n), of Φn are integers, while the cyclotomic polynomials are
irreducible over Z (see for example, [133], Theorem 1, p. 195).

The characterization of extended cyclotomic polynomials with integer
coefficients can be done by using Kronecker’s Theorem (see, e.g., [66] and
[111]). Here we present an alternative proof based on Galois theory.

Consider the extension K = Q(ζn)/Q. This is Galois and the ring of in-
tegers of K is O(K) = Z[ζn]; see, e.g., [153, Theorem 4, Chapter IV]. By the
fundamental theorem of Galois theory, an element α in K is rational if and
only if σ(α) = α for all σ in Gal(K/Q) and, since for any number field K one
has O(K)∩Q = Z, we deduce that an element β in O(K) is an integer if and
only if σ(β) = β for all σ in Gal(K/Q) (see [85, Theorem 7.3.1]).

Denoting for simplicity P = Φm1,...,mϕ(n) , this polynomial has coefficients
in O(K) and by the previous observations, these coefficients are integers pre-
cisely when σ(P(z)) = P(z) for all σ ∈ Gal(K/Q). To finish off, we note that
Gal(K/Q) acts transitively on the group of n-th roots of unity, and hence,
for any i, j ∈ (Z/nZ)∗, there is a σ in Gal(K/Q) such that σ(ζ i

n) = ζ
j
n. This

shows that mi = mj (the equality of P(z) and σ(P(z)) is one of polynomials
in K[z], which is a UFD and all the factors are irreducible) and since i and
j were arbitrary, it shows that m1 = · · · = mϕ(n) = s. In this case we have
Φm1,...,mϕ(n)(z) = Φn(zs), where s is an arbitrary positive integer. The poly-
nomials Φn(zs) play an important role in the study of cyclotomic partitions.

9.3.2 Integral formulae for the coefficients

Here we also index powers by the primitive roots, i.e., mk with k≤ n− 1 and
gcd(k,n) = 1. In this case, for each t ∈ [0,π] formula (9.2) becomes

Λ(t;m1, . . . ,mϕ(n);ζ1, . . . ,ζϕ(n)) = Λ(t;m1, . . . ,mϕ(n))

= ∏
1≤k≤n−1

gcd(k,n)=1

sin
(

mkt− kπ

n

)
.

As shown in [20, Lemma 2.1], in this case we have

α = ∑
1≤k≤n−1

gcd(k,n)=1

2kπ

n
= ϕ(n)π.
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As ϕ(n) is even for n ≥ 3, using eikπ = (−1)k, k ∈Z and Theorem 9.1 (1)
the coefficients of the polynomial Φm1,...,mϕ(n) are given by

Cj =
(−1)

ϕ(n)
2 2ϕ(n)

π

∫ π

0
Λ(t;m1, . . . ,mϕ(n))e

i
(
(m−2j)t+ ϕ(n)

2 π
)

dt

=
2ϕ(n)

π

∫ π

0
Λ(t;m1, . . . ,mϕ(n))e

i(m−2j)t dt. (9.26)

If the coefficient Cj is a real number, then by Theorem 9.1 (2), we have

Cj =
2ϕ(n)

π

∫ π

0
Λ(t;m1, . . . ,mϕ(n))cos(m− 2j)tdt. (9.27)

As a consequence, since cos(m− 2j)t = cos(m− 2(m− j))t, t ∈ [0,2π], from
(9.27) we obtain Cj = Cm−j, j = 0, . . . ,m, hence we get the following result:

Corollary 9.3. If Φm1,...,mϕ(n) has real coefficients, then it is reciprocal.

Notice that for m1 = · · · = mϕ(n) one recovers Theorem 8.10.

9.3.3 Some related integer sequences

The numerical calculations producing the sequences in Tables 9.3 have been
computed in Matlab R© and Wolfram Alpha. Some new integer sequences,
not currently indexed in OEIS [190] are obtained.

Considering mk = 1 for k = 1, . . . , ϕ(n), we obtain the classical cyclotomic
polynomial Φ1,...,1 = Φn. The coefficients of Φn are integers and they have
been studied in detail by numerous authors. Some interesting integer se-
quences generated by the extended cyclotomic polynomials are defined by
the number of non-zero coefficients.

Setting n = 5 we have ϕ(5) = 4 and ζ = cos 2π
5 + i sin 2π

5 , hence

Φ1,1,1,1(z) = Φ4(z) = (z− ζ)(z− ζ2)(z− ζ3)(z− ζ4) = z4 + z3 + z2 + z + 1.

Also, setting m1 = 1 and mk = 2 for k ≥ 2, for n = 5 we obtain

Φ1,2,2,2(z) = (z− ζ)(z2 − ζ2)(z2 − ζ3)(z2 − ζ4) = z7 − ζz6 − (ζ2 + ζ3 + ζ4)z5

+ (1 + ζ3 + ζ4)z4 + (1 + ζ + ζ2)z3 − (ζ + ζ2 + ζ3)z2 − ζ4z + 1.

When n = 6, ϕ(6) = 2, ζ = cos 2π
6 + i sin 2π

6 for m1 = 1, m2 = 2 we get

Φ1,2(z) = (z− ζ)(z2 − ζ5) = z3 − ζz2 − ζ5z + 1.

For m1 = 1, m2 = 5, where Φ1,5(z) = (z− ζ)(z5 − ζ5) = z6 − ζz5 − ζ5z + 1.
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The first row of Table 9.3 recovers the sequence of non-zero coefficients
of cyclotomic polynomials, indexed as A051664 in OEIS. The second row
recovers the sequence A140434, counting the number of new visible points
created at each step in an n × n grid (n ≥ 2). Notice that the results in the
last two rows are similar whenever n is a prime, while both sequences are
not currently indexed. The n-th prime number was denoted by pn.

Polynomial Sequence of non-zero coefficients OEIS
Φ1,...,1 2, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 7, 2, 17, . . . A051664
Φ1,2,...,2 2, 2, 4, 4, 8, 4, 12, 8, 12, 8, 20, 8, 24, 12, 16, 16, . . . A140434
Φ1,2,3,...,3 2, 4, 4, 4, 10, 4, 16, 10, 16, 10, 28, 10, 34, 16, 22, . . . NEW
Φ1,2,...,ϕ(n) 2, 2, 4, 4, 11, 4, 22, 11, 22, 11, 56, 11, 79, 22, 37, . . . NEW
Φj1,j2,...,jϕ(n)

2, 2, 4, 4, 11, 4, 22, 15, 28, 15, 56, 15, 79, 39, 61, . . . NEW

Table 9.3 The number of non-zero coefficients of the polynomial Φm1 ,...,mϕ(n) , n ≥ 1. The
numbers j1 < . . . < jk < . . . < jϕ(n) are relatively prime with n.

9.4 Extended polygonal-type polynomials

The extended polygonal polynomial is defined by

Fm1,...,mn(z) =
n

∏
k=1

(zmk − 1), (9.28)

obtained for z1 = · · · = zn = 1 in (9.1) and the integers m1, . . . ,mn.
It clearly has integer coefficients and recovers the polygonal polynomial

(9.6) for mk = k, k = 1, . . . ,n. The roots of zmk − 1 are the complex coordinates
of the vertices of the regular mk-gon centered at the origin, having 1 as a
vertex, hence the roots of (9.28) are the complex coordinates of the vertices,
with repetitions, of the regular mk-gons with k = 1, . . . ,n.

9.4.1 Basic properties

According to the well-known formula xm − 1 = ∏d|m Φd(z), it follows that

Fm1,...,mn(z) =
n

∏
k=1

∏
d|mk

Φd(z),

i.e., the polynomial Fm1,...,mn has exactly ν(m1) + · · ·+ ν(mn) irreducible fac-
tors over Z, where ν(a) denotes the number of divisors of a. Since all the
factors are cyclotomic, Fm1,...,mn is a Kronecker polynomial [66].
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Theorem 9.6. The number of distinct roots of the polynomial (9.28) is

Rm1,...,mn = m1 + · · ·+ mn +
n

∑
j=2

(−1)j−1 ∑
1≤k1<···<kj≤n

gcd(mk1 , . . . ,mkj
).

(9.29)

Proof. For n = 2, the polynomials zm1 − 1 and zm2 − 1 have m1 and m2 dis-
tinct roots, respectively. Out of these, a number of gcd(m1,m2) are common.
In general, the proof follows by the inclusion-exclusion principle. Clearly,
the result holds even if the numbers m1, . . . ,mn are not all distinct. �

The following formula is obtained in particular.
Remark. For mk = k, k = 1, . . . ,n, a direct counting leads to

R1,...,n =
n

∑
k=1

ϕ(k).

This represents the sequence A002088 in the Online Encyclopedia of In-
teger Sequences (OEIS) [190], which has numerous interesting properties.

Theorem 9.7. Let n ≥ 2, and m1, . . . ,mn be integers and consider the set

Dm1,...,mn = {d ∈N : d is a divisor of mk, for some k = 1, . . . ,n}.

For each d ∈ Dm1,...,mn we denote the number of multiples of d in Dm1,...,mn by
Md(Dm1,...,mn). The following identity holds:

∑
d∈Dm1,...,mn

ϕ(d) ·Md(Dm1,...,mn) = m1 + · · ·+ mn. (9.30)

Proof. We count the roots of the polynomial (9.28) in two ways, consider-
ing multiplicities. A primitive root ζ = cos 2sπ

d + i cos 2sπ
d of order d with

gcd(s,d) = 1 is a root of (9.28) if and only if d ∈ Dm1,...,mn . Indeed, for each
k = 1, . . . ,n, the roots of zmk − 1 = 0 are distinct, while ζ is a mk-th root, when-
ever d is a divisor of mk. Conversely, for each d ∈ Dm1,...,mn , the number of
d-th primitive roots of unity is ϕ(d), while the multiplicity of each such root
in (9.28) is given by Md(Dm1,...,mn). On the other hand, the polynomial (9.28)
has m1 + · · ·+ mn roots, counting multiplicities. �

Corollary 9.4. Let 1≤ k≤ n be an integer. If mk = k, k = 1, . . . ,n, by Theorem 9.7

n

∑
k=1

ϕ(k)
⌊n

k

⌋
=

n(n + 1)
2

.

In the limit cases m1 = · · · = mn or n = 1, formula (9.30) reduces to the classical
summation formula of Gauss ∑d|m ϕ(d) = m.
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Setting z1 = · · · = zn = −1 in formula (9.1), one obtains the extended anti-
polygonal polynomial, given by

Am1,...,mn(z) =
n

∏
k=1

(zmk + 1). (9.31)

Such polynomials with integer coefficients play an important role in the
study of partitions. For example, the coefficient of zm of the polynomial
A2m1,...,2mn , where m = m1 + · · ·+ mn, is the number of ordered bipartitions
of the set {m1, . . . ,mn} having equal sums (see, e.g., [15, 29, 35, 42]).

Clearly, the product Fm1,...,mn · Am1,...,mn = F2m1,...,2mn is a product of exactly
ν(2m1) + · · · + ν(2mn) cyclotomic polynomials. The number of irreducible
factors over Z of the polynomial Am1,...,mn is

ν(2m1) + · · ·+ ν(2mn)− [ν(m1) + · · ·+ ν(mn)] . (9.32)

All these factors are cyclotomic, hence Am1,...,mn is a Kronecker polynomial.
This is a special case of Kronecker’s Theorem [66, Chapter 6, pp.43-56].

9.4.2 Coefficients of extended polygonal-type polynomials

Notice that for the polynomial Fm1,...,mn given by formula (9.28), we have
zk = 1, hence αk = 0 for k = 1, . . . ,n, and α = α1 + · · · + αn = 0. We shortly
denote by Λ(t;m1, . . . ,mn), the function Λ(t;m1, . . . ,mn,0, . . . ,0). We have

Λ(t;m1, . . . ,mn) =
n

∏
k=1

sinmkt, t ∈ [0,π]. (9.33)

Since the coefficients Cj of Fm1,...,mn (9.28) are real, by Theorem 9.1 (2) we
obtain the following result.

Theorem 9.8. The coefficients of the polynomial Fm1,...,mn are given by

Cj =


(−1)

n
2 2n

π

∫ π
0 Λ(t;m1, . . . ,mn)cos(m− 2j)tdt if n is even

(−1)
n+1

2 2n

π

∫ π
0 Λ(t;m1, . . . ,mn)sin(m− 2j)tdt if n is odd.

(9.34)

For the polynomial Am1,...,mn (9.31) one has zk = −1, hence αk = π for
k = 1, . . . ,n and α = α1 + · · ·+ αn = nπ. We denote Λ(t;m1, . . . ,mn,π, . . . ,π)

by Λ̃(t;m1, . . . ,mn), and obtain

Λ̃(t;m1, . . . ,mn) =
n

∏
k=1

cosmkt, t ∈ [0,π]. (9.35)
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The following result can be obtained from Theorem 9.1 (2).

Theorem 9.9. The coefficients of the polynomial Am1,...,mn are given by

Cj =
2n

π

∫ π

0
Λ̃(t;m1, . . . ,mn)cos(m− 2j)tdt, j = 0, . . . ,m. (9.36)

It also follows that∫ π

0
Λ̃(t;m1, . . . ,mn)sin(m− 2j)tdt = 0, j = 0, . . . ,m.

Remark. An interesting particular case is obtained for mk = k, k = 1, . . . ,n.
If S(n) is the number of ordered bipartitions of {1,2, . . . ,n} into sets having
equal sums, then this is the middle coefficient of the polynomial A1,2,...,n,

that is the coefficient of z
n(n+1)

2 when n ≡ 0 or n ≡ 3 (mod 4).
In [35], D. Andrica and I. Tomescu conjectured the asymptotic formula

S(n) ∼
√

6
π
· 2n

n
√

n
,

where f (n) ∼ g(n) means that lim
n→∞

f (n)/g(n) = 1. This formula has been

proven by B. D. Sullivan [219], using the corresponding integral formula
from Theorem 9.9 and complicated analytic techniques.

9.4.3 Some related integer sequences

The extended polygonal polynomial Fm1,...,mn has integer coefficients. For
example, when n = 4 and m1 = 1, m2 = 2, m3 = 3 and m4 = 4 one has

F1,2,3,4(z) = (z− 1)(z2 − 1)(z3 − 1)(z4 − 1)

= z10 − z9 − z8 + 2z5 − z2 − z + 1,

which has 7 non-zero coefficients of which the highest is equal to 2.

In this section we explore some integer sequences related to the number
of non-zero, and the maximum coefficients of the polynomial Fm1,...,mn , the
for the sequence Fm1,...,mn , as well as to the number of irreducible factors over
integers for the polynomial Am1,...,mn . The numerical calculations producing
the sequences presented in the Tables 9.3-9.7 in this section, have been com-
puted in Matlab R© and Wolfram Alpha. In this process we recover some
new integer sequences, not currently indexed in OEIS [190].
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9.4.3.1 The number of non-zero coefficients of Fm1,...,mn

The sequence giving the number of non-zero coefficients of Fm1,...,mn (n ≥ 1)
recovers some known integer sequences, as well as a novel sequence when
mn = pn is the n-th prime (n ≥ 1), as seen in Table 9.4. The first and third
lines are identical, since Fkm1,...,kmn(z) = Fm1,...,mn(z

k), for all k ∈N.

Polynomial Sequence of non-zero coefficients OEIS
F1,...,n 2, 4, 6, 7, 12, 14, 18, 25, 32, 36, 42, 53, 68, 64, 84, . . . A086781
F1,...,2n−1 2, 4, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, . . . A082562
F2,...,2n 2, 4, 6, 7, 12, 14, 18, 25, 32, 36, 42, 53, 68, 64, 84, . . . A086781
F1,...,n2 2, 4, 8, 16, 24, 40, 68, 103, 162, 236, 344, 453, 612, . . . A225549
Fp1,...,pn 2, 4, 6, 8, 14, 20, 24, 32, 46, 66, 92, 138, 162, 204, . . . NEW

Table 9.4 The number of non-zero coefficients of the polynomial Fm1 ,...,mn , n ≥ 1.

9.4.3.2 The maximum coefficient of Fm1,...,mn

The maximum coefficient of Fm1,...,mn (n ≥ 1) recovers some known integer
sequences when mn = n or mn = 2n, while it also generates some novel se-
quences in the other cases, as seen in Table 9.5.

Polynomial Sequence of maximum coefficients of Fm1,...,mn OEIS
F1,...,n 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3,3, 4, 6, 5, 6, 7, 8, . . . A086376
F1,...,2n−1 1, 1, 1, 2, 2, 3, 5, 8, 13, 22, 38, 68, 118, 211, 380, . . . NEW
F2,...,2n 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 3, 4, 6, 5, 6, 7, 8, . . . A086376
F1,...,n2 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 11, 14, 12, 12, . . . NEW
Fp1,...,pn 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 6, 8, 12, 17, 30,. . . NEW

Table 9.5 The maximum coefficient of the polynomial Fm1 ,...,mn , n ≥ 1.

9.4.3.3 The number of irreducible factors over integers of Am1,...,mn

The number of irreducible factors of Am1,...,mn given by (9.32), simplifies to

∑n
k=1

ν(mk)
αk+1 , where mk = 2αk m′k, with m′k odd, k = 1, . . . ,n. Some sequences

arise naturally for particular choices of mk, k = 1, . . . ,n.

The interpretations known for the OEIS sequence A001227 in the first row
of Table 9.6 include: the number of odd divisors of n, the number of ways to
write n as difference of two triangular numbers, the number of partitions of
n into consecutive positive integers, or the number of factors in the factor-
ization of the n-th Chebyshev polynomial of the first kind.
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Polynomial Number of irreducible factors OEIS
zn + 1 1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, . . . A001227
z3n + 1 2, 2, 3, 2, 4, 3, 4, 2, 4, 4, 4, 3, 4, 4, 6, . . . NEW
z9n + 1 3, 3, 4, 3, 6, 4, 6, 3, 5, 6, 6, 4, 6, 6, 8, . . . NEW

Table 9.6 Number of irreducible factors over the integers of the polynomial zmn + 1, for
mn = n, mn = 3n and mn = 9n, n ≥ 1.

Polynomial Number of irreducible factors of Am1,...,mn OEIS
A1,...,n 1, 2, 4, 5, 7, 9, 11, 12, 15, 17, 19, 21, 23, 25, 29, . . . A060831
A3,...,3n 2, 4, 7, 9, 13, 16, 20, 22, 26, 30, 34, 37, 41, 45, 51, . . . NEW
A9,...,9n 3, 6, 10, 13, 19, 23, 29, 32, 37, 43, 49, 53, 59, 65, 73, . . . NEW

Table 9.7 The number of irreducible factors over the integers of the polynomial Am1 ,...,mn ,
for mn = n, mn = 3n and mn = 9n, n ≥ 1.

Some interpretations known for the OEIS sequence A060831 in the first
row of Table 9.7 are the following: the number of odd divisors present in
{1, . . . ,n}, the number of sums less than or equal to n of sequences of con-
secutive positive integers, or the total number of partitions of all positive
integers less or equal to n into an odd number of equal parts. The asymp-
totic formula for the OEIS sequence A060831 was conjectured in 2019 as
a(n) ∼ n (log(2n) + 2γ− 1)/2, where γ is the Euler-Mascheroni constant.

9.5 Gaussian, multinomial and Catalan polynomials

In what follows we shall present some properties of the Gaussian, multino-
mial and Catalan polynomials and some integral formulae for their coeffi-
cients, based on the papers [18] and [19].

9.5.1 Coefficients of Gaussian polynomials

Let m and r be positive integers. The Gaussian polynomial is defined by(
m
r

)
z
=

r(m−r)

∑
k=0

C(m,r)
j zj =

Pm(z)
Pr(z)Pm−r(z)

=

{
(zm−r+1−1)···(zm−1)

(z−1)···(zr−1) if r ≤ m

0 if r > m.
(9.37)

Notice that while formula (9.37) seems to involve a rational function, the
division is actually exact in the ring Z[z], of polynomials with integer coef-
ficients, and it generates a polynomial of degree r(m− r).
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The Gaussian polynomial (9.37) has distinct roots roots (see. e.g., Chen
and Hou [77]), while its factorization in terms of cyclotomic polynomials
was given by Knuth and Wilf [148] as(

m
r

)
z
=

m

∏
k=1

[Φk(z)]
bm/kc−br/kc−b(m−r)/kc , (9.38)

where Φk(z) denotes the k-th cyclotomic polynomial.

The coefficients C(m,r)
j , j = 0, . . . ,r(m− r), have many interesting proper-

ties and interpretations. The coefficient C(m,r)
j represents the number of par-

titions of number j whose Ferrers diagram fits into a r × (m− r) rectangle.
Also, if δ = δ1δ2 · · ·δr is a r-subset of [n], and σ(δ) = ∑r

i=1 δi (weight of δ),

then C(m,r)
j is the number of r-subsets of [n] with weight j + r(r+1)

2 [191].

It is known that the sequence C(m,r)
j , j = 0, . . . ,r(m− r), is unimodal. First

stated by Cayley in 1856, this property was proved by Sylvester in 1878, and
a constructive proof was first given by O’Hara in 1990 [191]. However, this
sequence is not always log-concave (see, e.g., (4

2)z = 1 + z + 2z2 + z3 + z4),
as shown by Stanley in 1989 [218]. Other generalized Gaussian coefficients
were proved to be unimodal by Kirillov in 1992 [143].

By simple work with complex numbers [6], and using formula

zk − 1 = (cos2kt− 1) + i sin2kt = 2ieikt sinkt, (9.39)

from Theorem 9.1 (2) applied for the function

Λm
r (t) =

r

∏
k=1

sin(m− r + k)t
sinkt

, (9.40)

we obtain a formula for the coefficients of the Gaussian polynomial (m
r )z.

Theorem 9.10. The coefficients of the polynomial (m
r )z are given by

C(m,r)
j =

1
π

∫ π

0
Λm

r (t) · cos [r(m− r)− 2j] tdt, j = 0, . . . ,r(m− r). (9.41)

Remark. By Theorem 9.10 we can easily prove that the polynomial (m
r )z is

palindromic. Indeed, for j = 0, . . . ,r(m− r), one obtains

C(m,r)
r(m−r)−j =

1
π

∫ π

0
Λm

r (t) · cos [r(m− r)− 2(r(m− r)− j)] tdt

=
1
π

∫ π

0
Λm

r (t) · cos [−r(m− r) + 2j] tdt = C(m,r)
j . (9.42)
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A simple formula for the middle coefficients can also be derived.

Proposition 9.3. The middle coefficient of the polynomial (m
r )z is given by:

1. If r(m− r) = 2k, then

C(m,r)
k =

1
π

∫ π

0
Λm

k (t)dt.

2. If r(m− r) = 2k + 1, then

C(m,r)
k = C(m,r)

k+1 =
1
π

∫ π

0
Λm

k (t) · cos tdt.

9.5.2 Coefficients of multinomial polynomials

Let s,m,m1 . . . ,ms be positive integers such that m1 + · · · + ms = m. The
multinomial polynomial is defined by the formula:(

m
m1, · · · ,ms

)
z
=

Pm(z)
Pm1(z) · · ·Pms(z)

=
M

∑
j=0

Cm1,··· ,ms
j zj, (9.43)

Clearly, for s = 2 and m1 = r, one obtains the Gaussian polynomial. While
the formula (9.43) seems to involve a rational function, the division is in fact
exact in the ring Z[z]. The degree of this polynomial is

M =
m(m + 1)

2
−

s

∑
j=1

mj(mj + 1)
2

=
1
2

[
m2 − (m2

1 + m2
2 + · · ·+ m2

s )
]

= ∑
1≤k<l≤s

mkml . (9.44)

The multinomial polynomial can be factorized in irreducible factors in-
volving the cyclotomic polynomials, as shown by Chen and Huo in [77,
Lemma 1], and naturally extends formula (9.38).

Proposition 9.4. The multinomial polynomial (9.43) can be factorized as(
m

m1, · · · ,ms

)
z
=

m

∏
k=1

[Φk(z)]
bm/kc−bm1/kc−bm2/kc−···−bms/kc ,

where Φk(z) denotes the k-th cyclotomic polynomial.

From this result we can obtain an interesting identity concerning the degree
of this polynomial, which involves the floor function.
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Theorem 9.11. Let m,m1,m2, . . . ,ms be positive integers which satisfy the identity
m = m1 + m2 + · · ·+ ms. The following relation holds:

m

∑
k=1

ϕ(k) (bm/kc − bm1/kc − bm2/kc − · · · − bms/kc) = M. (9.45)

By using again the result in Theorem 9.1 (2) with the function

Λm
m1,...,ms(t) =

∏m
k=1 sinkt

∏s
j=1

(
∏

mj
k=1 sinkt

) , (9.46)

we get an integral formula for the coefficients of the polynomial ( m
m1,··· ,ms

)
z
.

Theorem 9.12. The coefficients of the polynomial ( m
m1,··· ,ms

)
z

are given by

Cm1,...,ms
j =

1
π

∫ π

0
Λm

m1,...,ms(t) · cos (M− 2j) tdt, j = 0, . . . , M. (9.47)

Notice that the integral in formula (9.47) is not singular, since we have

lim
t→0

Λm
m1,...,ms(t) =

m!
∏s

j=1 mj!
=

(
m

m1, . . . ,ms

)
.

Remark. Using Theorem 9.12 it follows that the polynomial ( m
m1,··· ,ms

)
z

is
palindromic. Indeed, for j = 0, . . . , M, one obtains

Cm1,...,ms
M−j =

1
π

∫ π

0
Λm

m1,...,ms(t) · cos (M− 2(M− j)) tdt

=
1
π

∫ π

0
Λm

m1,...,ms(t) · cos (−M + 2j) tdt = Cm1,...,ms
j . (9.48)

A formula for the middle coefficients can also be derived.

Proposition 9.5. The middle coefficient of ( m
m1,··· ,ms

)
z

is given by the following for-
mulae (depending on the parity of M):
1◦. If M = 2k, then

Cm1,...,ms
k =

1
π

∫ π

0
Λm

m1,...,ms(t)dt. (9.49)

2◦. If M = 2k + 1, then

Cm1,...,ms
k = Cm1,...,ms

k+1 =
1
π

∫ π

0
Λm

m1,...,ms(t) · cos tdt. (9.50)
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9.5.3 Coefficients of Catalan polynomials

For a positive integer m, the m-th Catalan polynomial is defined by

Qm(z) =
z− 1

zm+1 − 1

(
2m
m

)
z
=

z− 1
zm+1 − 1

· P2m(z)
P2

m(z)
=

m(m−1)

∑
j=0

cm
j zj, (9.51)

having degree m(m− 1) and at least m− 1 irreducible factors [77].
Applying the formula (9.39), we obtain(

2m
m

)
z
= eim2t ∏2m

k=1 sinkt

(∏m
k=1 sinkt)2 .

Denoting for simplicity by

Ψm(t) =
sin t

sin(m + 1)t
Λ2m

m (t), t ∈ [0,π],

by Theorem 9.1 (2) we obtain the following result

Theorem 9.13. The coefficients of the polynomial Qm(z) are given by

cm
j =

1
π

∫ π

0
Ψm(t) · cos [m(m− 1)− 2j] tdt, j = 0, . . . ,m(m− 1). (9.52)

Notice that the integral in formula (9.52) is not singular, since we have

lim
t→0

Ψm(t) =
1

m + 1

(
2m
m

)
,

which represents the m-th Catalan number.

Remark. Theorem 9.13 can be used to prove that the Catalan polynomial is
palindromic. Indeed, for j = 0, . . . ,m(m− 1), one obtains

cm
m(m−1)−j =

1
π

∫ π

0
Ψm(t) · cos [m(m− 1)− 2(m(m− 1)− j)] tdt

=
1
π

∫ π

0
Ψm(t) · cos [−m(m− 1) + 2j] tdt = cm

j . (9.53)

We also give an integral formula for the middle coefficient.

Proposition 9.6. The middle coefficient of Qm(z) is given by:

cm
m(m−1)

2
=

1
π

∫ π

0
Ψm(t)dt.





Chapter 10
Partitions and Recurrences

An integer partition is a way of writing an integer as a sum of natural
numbers. The study of partitions was pioneered by Euler (1748), who in-
troduced many concepts which are still in use, and proved fundamental re-
sults concerning partitions into distinct parts, or into odd parts. Since that
time, numerous mathematicians including Gauss, Cauchy, Jacobi, Weier-
strass, MacMahon, Hardy, Ramanujan, Erdös or Andrews contributed to the
study of partitions. Key details about the history of partitions can be found
in the classical books of Andrews [12] and [13], or in the review article by
Pak [196], which focuses on bijective proofs of classical partitions identities.

Partitions play a significant role in many branches of mathematics, like
combinatorics, group representation theory, or symmetric polynomials. Par-
titions have direct applications to classical combinatorial optimization prob-
lems such as the Bin Packing Problem (BPP), the Multiprocessor Scheduling
Problem (MSP) and the 0− 1 Multiple Knapsack Problem (MKP) [88].

In Section 10.1 we present key results and problems concerning parti-
tions, including the signum equation, and the Laurent ring Z[X, X−1].

In Section 10.2 we investigate in detail the ordered 2-partitions of multi-
sets with equal sums, which are related to the signum equation, based on
the results presented in our paper [42]. We provide integral formulae for the
number of such partitions, and we explore the scenario when the multiset
contains m ≥ 1 copies of the set {1, . . . ,n}. Some conjectures are stated.

In Section 10.3 we analyze the number of ordered k-partitions with equal
sums of a multiset, for which we derive generating functions, integral for-
mulae, and recurrences. Numerical experiments are used to illustrate the
results and to formulate some new conjectures. The generating function ap-
proach proposed by Andrica in [14] opened the way to numerous novel
results related to multi-partitions with equal sums.

Examples involving particular case of 3-partitions with equal sums are
also provided [15]. Some sequences resulting from this investigation were
new, or provided novel context to existing entries in OEIS.

273
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10.1 Some classical partition problems and preliminaries

Euler showed that the number of ways in which an integer n ≥ 2 can be
partitioned as a sum of positive integers is given by the generating function

∞

∑
n=0

p(n)xn =
∞

∏
k=1

(
1

1− xk

)
. (10.1)

In fact, Euler has also considered the partition of number n obtained when
the summands only belong to a certain set of integers A. More details about
generating functions related to partitions can be found in [232].

A first asymptotic formula for p(n) was given by Hardy and Ramanujan,
who in 1918 proposed the following result

p(n) ∼ 1
4n
√

3
exp

(
π

√
2n
3

)
, (10.2)

valid as n→∞. An elementary proof was given in 1942 by Erdös [97].
Of particular interest are the partitions of the set {1,2, . . . ,n}, related to

the signum equation, and that of k-partitions with equal sums.

10.1.1 The signum equation

The signum equation is classic a combinatorial problem, first considered by
S. Finch [102]. For a given positive integer n, the level n solution of this
equation denoted by S(n), which corresponds to the number of ways of
choosing + and − such that ±1± 2± 3± · · · ± n = 0. This also represents
the number of partitions of {1,2, . . . ,n} in two sets with equal sums. The
sequence {S(n)}n≥0 is indexed as A063865 in the Online Encyclopedia of
Integer Sequences (OEIS) [190], and its first few terms are

1,0,0,2,2,0,0,8,14,0,0,70,124,0,0,722,1314,0,0, . . .

For example, S(7) = 8 since 1 + · · ·+ 7 = 28 and

14 = 1 + 6 + 7 = 2 + 5 + 7 = 3 + 4 + 7 = 3 + 5 + 6.

The asymptotic formula for S(n) was conjectured by Andrica and Tomescu
[35] in 2002:

lim
n→∞

n≡0 or 3(mod4)

S(n)
2n

n
√

n

=

√
6
π

.
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The result was proved in 2013 by Sullivan [219], by analytic methods.
Proof details and possible extensions, as well as connections to Erdös-
Suranyi representations, were suggested in [29, 30].

Starting from an interesting analysis problem with trigonometric inte-
grals [14], Andrica established a generating function which allowed novel
approaches in the study of 2-partitions with equal sums for multisets (this
was also discussed recently in [25]). For more information regarding the
general theory of multisets one can check the paper by Stanley [217]. The
connection with unimodal polynomials is made in [36] and with some as-
pects in special representations of integers, known as Erdös-Suranyi repre-
sentations are given in [93], [96] and [102].

10.1.2 The Laurent ring Z[X, X−1]

Recall that a Laurent polynomial with integer coefficients has the form

p = ∑
k∈Z

akXk, ak ∈Z,

where X is a formal variable, and only finitely many coefficients ak are non-
zero. Two Laurent polynomials are equal if their coefficients are equal. Such
expressions can be added, multiplied, and brought back to the same form
by reducing the corresponding similar terms.

Formulae for addition and multiplication are the same as for the ordinary
polynomials, with the only difference being that both positive and negative
powers of X can be present. The set of Laurent polynomials Z[X, X−1] is a
ring with respect to the addition and multiplication.

A Laurent polynomial p∈Z[X, X−1] is symmetric if it satisfies the relation
p(X) = p(X−1). This property is equivalent to a−k = ak, for all k ∈ Z. The
maximal positive integer s with as 6= 0 defines the degree of p. The set of all
symmetric Laurent polynomials Zsymm[X, X−1] is a subring of Z[X, X−1].

10.2 Ordered 2-partitions of multisets

The interplay between integer sequences and partitions has led to numer-
ous interesting results, with implications in generating functions, integral
formulae, or combinatorics. An illustrative example is the number of solu-
tions at level n to the signum equation. Here we present some of the results
and conjectures concerning 2-partitions of multisets, given in [42].
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10.2.1 Definitions and notations

Let α1, . . . ,αn ∈R and m1, . . . , mn ∈N, and consider the multiset

M = {α1, · · · ,α1︸ ︷︷ ︸
m1 times

, . . . ,αn, · · · ,αn︸ ︷︷ ︸
mn times

}.

For s = 1, . . . ,n, we call ms the multiplicity of element αs in the multiset M,
while σ(M) = ∑n

s=1 msαs is the sum of the elements of M.

Definition 10.1. Let α = (α1, . . . ,αn), m = (m1, . . . ,mn) and denote by S(m;α)
the number of ordered 2-partitions of M having equal sums, i.e., the number
of pairs (C1,C2) of subsets of M satisfying the properties

(i) C1 ∪ C2 = M and C1 ∩ C2 = ∅;

(ii) ∑
x∈C1

x = ∑
x∈C2

x = 1
2 ∑n

i=1 miαi.

One can check that S(m;α) is the constant term in the expansion

F(z) =
(

zα1 +
1

zα1

)m1
(

zα2 +
1

zα2

)m2

· · ·
(

zαn +
1

zαn

)mn

. (10.3)

Clearly, from the relation F(z) = F(1/z) it follows that the expression of
F(z) in (10.3), after we expand, is a symmetric Laurent polynomial of vari-
able z and degree ∑k

i=1 miαi. When m1 = . . . = mk = m, we say that the ele-
ments of the multiset M are of the multiplicity m.

Expanding F(z) one obtains its algebraic form

F(z) = c0(m;α) + ∑
j∈Z\{0}

cjzj, (10.4)

where all coefficients cj of F are zero, excepting a finite number. For the unity
of notation, we use c0(m;α) = S(m;α) and cj = cj(m;α), for j ∈Z \ {0}.

10.2.2 Integral formulae

Setting z = cos t + i sin t in (10.3) and (10.4) we get

2m1+···+mk
k

∏
s=1

(cosαst)ms = c0(m;α) + ∑
j∈Z\{0}

cj(cos jt + i sin jt).

Integrating in t over [0,2π], we obtain the following formula

c0(m;α) =
2m1+···+mn

2π

∫ 2π

0

n

∏
s=1

(cosαst)ms dt. (10.5)
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The combinatorial intepretation of the coefficient cj(m;α) is the number of
representations of the integer j as

j = ±α1 ± · · · ± α1︸ ︷︷ ︸
m1 times

± · · · ± αn ± · · · ± αn︸ ︷︷ ︸
mk times

,

for all possible 2m1+···+mn choices of signs + and −.

If we multiply the relation (10.4) by z−j we get

z−jF(z) = cj(m;α) + ∑
l 6=j

clzl , (10.6)

hence by integrating in t over [0,2π], we have

cj(m;α) =
2m1+···+mn

2π

∫ 2π

0
cos jt

n

∏
s=1

(cosαst)ms dt. (10.7)

10.2.3 Multisets with equal multiplicity

Consider the multiset M = [n]m consisting of m copies of each element of
the set [n] = {1, . . . ,n}. In the paper [42] we have studied some properties of
the symmetric Laurent polynomial defined by the expansion

Fn,m(z) =
(

z +
1
z

)m(
z2 +

1
z2

)m
· · ·
(

zn +
1
zn

)m

= ∑
j∈Z

c(m)
j (n)zj, (10.8)

which is a special case of the polynomial in (10.3), obtained for k = n and
α1 = 1, . . . ,αn = n. Notice that the symmetric Laurent polynomial Fn,m(z)

has the degree
mn(n + 1)

2
.

If we multiply the polynomials Fn,k(z) and Fn,l(z), we have the following
formula for the coefficients of Fn,k+l(z)

c(k+l)
d (n) = ∑

j∈Z

c(k)j+d(n)c
(l)
j (n), d ∈Z. (10.9)

Recurrent formulae for c(m)
j (n) as a function of terms of the form c(m)

j (n),
which allow an efficient numerical computation.
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For m = 1 one obtains c(1)j (n) recursively as

Fn,1(z) = ∑
j∈Z

c(1)j (n)zj = Fn−1,1(z)
(

zn +
1
zn

)

=

(
∑
j∈Z

c(1)j (n− 1)zj

)(
zn +

1
zn

)

=

(
∑
j∈Z

c(1)j (n− 1)zj+n

)
+

(
∑
j∈Z

c(1)j (n− 1)zj−n

)
= ∑

j∈Z

(
c(1)j−n(n− 1) + c(1)j+n(n− 1)

)
zj.

Hence,

c(1)j (n) = c(1)j−n(n− 1) + c(1)j+n(n− 1), for j ∈Z. (10.10)

Similarly, c(2)j (n) can also be obtained recurrently by

Fn,2(z) = ∑
j∈Z

c(2)j (n)zj = Fn−1,2(z)
(

zn +
1
zn

)2

=

(
∑
j∈Z

c(2)j (n− 1)zj

)(
z2n + 2 +

1
z2n

)
= ∑

j∈Z

c(2)j (n− 1)zj+2n + ∑
j∈Z

c(2)j (n− 1)zj + ∑
j∈Z

c(2)j (n− 1)zj−2n

= ∑
j∈Z

(
c(2)j−2n(n− 1) + 2c(2)j (n− 1) + c(2)j+2n(n− 1)

)
zj.

Hence, for j ∈Z one obtains

c(2)j (n) = c(2)j−2n(n− 1) + 2c(2)j (n− 1) + c(2)j+2n(n− 1). (10.11)

The following recurrences are valid for j ∈Z and n ≥ 1.

c(3)j (n) = c(3)j−3n(n− 1) + 3c(3)j−n(n− 1) + 3c(3)j+n(n− 1) + c(3)j+3n(n− 1)
(10.12)

c(4)j (n) = c(4)j−4n(n− 1) + 4c(4)j−2n(n− 1) + 6c(4)j (n− 1)

+ 4c(4)j+2n(n− 1) + c(4)j+4n(n− 1). (10.13)
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In general, for m even one obtains the formula

c(m)
j (n) =

m/2

∑
k=1

(
m
k

)
c(m)

j±2kn(n− 1) +
(

m
m/2

)
c(m)

j (n− 1), (10.14)

c(m)
j (n) =

(m+1)/2

∑
k=1

(
m

2k− 1

)
c(m)

j±(2k−1)n(n− 1). (10.15)

when m is even or odd, respectively.

10.2.4 Associated integer sequences

Various integer sequences can be recovered from the coefficients of Fn,m(z)
given in formula (10.8). Of particular interest are the sequences c(m)

0 (n), rep-
resenting the constant term of Fn,m(z). As seen in our paper [42], the se-
quences c(m)

j (n) obtainde for fixed values j = 1,2, . . . have an interesting
combinatorial interpretation and importance.

The case m = 1

For m = 1, sequence c(1)0 (n) represents also the number of solutions at level

n to the signum equation, which is A063865 in OEIS. More precisely, c(1)0 (n)
is the number of ways of choosing + and − such that

±1± 2± 3± · · · ± n = 0,

sometimes denoted by S(n) = c(1)0 (n). This is in fact an old combinato-
rial problem also considered by S. Finch [102]. Computations show that
c(1)0 (40) = 5830034720 and c(1)0 (100) = 1731024005948725016633786324, hence
the sequence terms seem to grow rather quickly.

Concerning its asymptotic behaviour, Andrica and Tomescu [35] conjec-
tured the following asymptotic formula in 2002:

lim
n→∞

n≡0 or 3(mod4)

S(n)
2n

n
√

n

=

√
6
π

.

This was proved analytically in 2013 by B.D. Sullivan [219]. Extensions of
this result will be discussed in the following sections.
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For m = 1 and fixed values of n, the coefficients {c(1)j (n)}j≥0 produce the
following finite sequences:

c(1)j (1) : 0,1

c(1)j (2) : 0,1,0,1

c(1)j (3) : 2,0,1,0,1,0,1

c(1)j (4) : 2,0,2,0,2,0,1,0,1,0,1

c(1)j (5) : 0,3,0,3,0,3,0,2,0,2,0,1,0,1,0,1

c(1)j (6) : 0,5,0,5,0,4,0,4,0,4,0,3,0,2,0,2,0,1,0,1,0,1

c(1)j (7) : 8,0,8,0,8,0,7,0,7,0,6,0,5,0,5,0,4,0,3,0,2,0,2,0,1,0,1,0,1

c(1)j (8) : 14,0,13,0,13,0,13,0,12,0,11,0,10,0,9,0,8,0,7,0,6,0,5,0,4,

0,3,0,2,0,2,0,1,0,1,0,1

c(1)j (9) : 0,23,0,23,0,22,0,21,0,21,0,19,0,18,0,17,0,15,0,13,0,12,

0,10,0,9,0,8,0,6,0,5,0,4,0,3,0,2,0,2,0,1,0,1,0,1

Notice that {c(1)j (n)}j≥0 has n(n + 1)/2 + 1 relevant terms, i.e., c(1)j (n) = 0
for j > n(n + 1)/2+ 1. The rows of this triangle are not indexed in the OEIS.

The case m = 2

For m = 2 one recovers the sequence

c(2)0 (n) : 2,4,10,26,76,236,760,2522,8556,29504, . . . ,

indexed in OEIS as A047653. By the recurrence formula (10.9), one obtains

c(2)0 (n) = ∑
j∈Z

c(1)j (n)c(1)j (n) = S2(n) + 2
n(n+1)/2

∑
j=1

(c(1)j (n))2. (10.16)

Concerning its asymptotic equivalent, the following formula was conjec-
tured by Kotesovec in 2014 (see A047653 in [190])

lim
n→∞

c(2)0 (n)
4n

n
√

n

=

√
3
π

.
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The coefficients {c(2)j (n)}j≥0 generate the following finite sequences:

c(2)j (1) : 2,0,1

c(2)j (2) : 4,0,3,0,2,0,1

c(2)j (3) : 10,0,8,0,7,0,6,0,3,0,2,0,1

c(2)j (4) : 26,0,24,0,22,0,20,0,16,0,12,0,9,0,6,0,3,0,2,0,1

c(2)j (5) : 76,0,73,0,70,0,65,0,58,0,51,0,42,0,34,0,26,0,20,0,14,0,9,0,

6,0,3,0,2,0,1

c(2)j (6) : 236,0,231,0,224,0,215,0,200,0,184,0,166,0,144,0,124,0,106,0,

86,0,69,0,54,0,40,0,30,0,22,0,14,0,9,0,6,0,3,0,2,0,1.

Notice that {c(2)j (n)}j≥0 has n(n + 1) + 1 relevant terms, i.e., c(2)j (n) = 0 for
j > n(n + 1) + 1. The rows of this triangle are not indexed in the OEIS.

The case m = 3

For m = 3 one obtains the sequence

c(3)0 (n) : 0,0,62,332,0,0,80006,531524,0,0,173607568, . . . ,

indexed in OEIS as A124995. While several terms of this sequences have
been computed, its asymptotic behaviour is not currently known. However,
a conjecture based suggested by numerical calculations has been formulated
in the following section.

The coefficients {c(3)j (n)}j≥0 produce the following finite sequences:

c(3)j (1) : 0,3,0,1

c(3)j (2) : 0,12,0,10,0,6,0,3,0,1

c(3)j (3) : 62,0,57,0,51,0,43,0,30,0,21,0,13,0,6,0,3,0,1

c(3)j (4) : 332,0,327,0,309,0,278,0,243,0,204,0,161,0,123,0,90,

0,61,0,39,0,24,0,13,0,6,0,3,0,1

c(3)j (5) : 0,1974,0,1932,0,1851,0,1731,0,1587,0,1419,0,1242,0,1062,0,

882,0,717,0,566,0,435,0,324,0,233,0,162,0,108,0,
70,0,42,0,24,0,13,0,6,0,3,0,1.
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One can notice that {c(3)j (n)}j≥0 has 3n(n + 1)/2 + 1 relevant terms, i.e.,

c(3)j (n) = 0 for j > 3n(n+ 1)/2+ 1. The rows of this triangle are not currently
indexed in the encyclopedia of integer sequences OEIS.

The case m = 4

For m = 4 one recovers the sequence

c(4)0 (n) : 6,44,426,4658,55260,689508,8914872, . . . ,

indexed in OEIS as A124996. The asymptotic behaviour of this sequence is
not currently known, but a conjecture based on numerical calculations is
formulated in the following section.

The coefficients {c(4)j (n)}j≥0 produce the following finite sequences:

c(4)j (1) : 6,0,4,0,1

c(4)j (2) : 44,0,40,0,31,0,20,0,10,0,4,0,1

c(4)j (3) : 426,0,408,0,372,0,320,0,251,0,188,0,130,0,80,

0,47,0,24,0,10,0,4,0,1

c(4)j (4) : 4658,0,4584,0,4380,0,4064,0,3650,0,3176,0,2680,0,2184,

0,1716,0,1304,0,952,0,664,0,445,0,284,0,170,0,96,0,
51,0,24,0,10,0,4,0,1

c(4)j (5) : 55260,0,54792,0,53433,0,51236,0,48302,0,44768,0,40773,0,

36492,0,32078,0,27692,0,23459,0,19492,0,15882,0,12672,0,
9902,0,7564,0,5642,0,4108,0,2912,0,2008,0,1342,0,868,0,
541,0,324,0,186,0,100,0,51,0,24,0,10,0,4,0,1

One can notice that {c(4)j (n)}j≥0 has 2n(n + 1) + 1 relevant terms, i.e.,

c(4)j (n) = 0 for j > 2n(n + 1) + 1. The rows of this triangle are not currently
indexed in the encyclopedia of integer sequences OEIS and more research is
required to study the interpretations.

10.2.5 Some conjectures

Numerical evidence suggests a number of conjectures.
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10.2.5.1 Asymptotic behaviour of sequences {c(m)
0 (n)}n≥0

In 2002, Andrica and Tomescu conjectured in the paper [35], the following
asymptotic formula for S(n) = c(1)0 (n):

lim
n→∞

n≡0 or 3(mod4)

S(n)
2n

n
√

n

=

√
6
π

.

This was proved in 2013 by using analytic methods by B.D. Sullivan [219].
The following asymptotic formula for c(2)0 (n) was then conjectured by

Kotesovec in 2014 (see A047653 in [190]):

lim
n→∞

c(2)0 (n)
4n

n
√

n

=

√
3
π

.

We aim to establish a more general result for c(m)
0 (n). To this end, let

m,n ≥ 1 be integers and define the function

fm(n) =

√
6

mπ

2mn

n
√

n
. (10.17)

The numerical results obtained for m = 1,2,3,4 shown in Fig. 10.1, suggest
the following asymptotic behaviour of c(m)

0 (n).

Conjecture 10.1. Let m ≥ 1 be an integer. The following formula holds

lim
n→∞

c(m)
0 (n)

2mn

n
√

n

=

√
6

mπ
. (10.18)

10.2.5.2 On the properties of cm
j (n)

Note that {c(m)
j (n)}j≥0 has mn(n+1)

2 + 1 relevant terms, i.e., c(m)
j (n) = 0 for

j > mn(n+1)
2 + 1, and we know that {c(1)j (n)}j∈Z has a modulo 2 unimodality.

Numerical evidence obtained so far suggests two other conjectures.

Conjecture 10.2. The non-zero subsequence of {c(m)
j (n)}j∈Z is unimodal. As

c(m)
j (n) = c(m)

−j (n) and every second term is zero, it is sufficient to prove that

the subsequences {c(m)
2j (n)}j≥0 and {c(m)

2j+1(n)}j≥0 are decreasing, by using
formula (10.9).
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Fig. 10.1 First 30 terms of sequences c(m)
0 (n)
fm(n) , m = 1,2,3,4, with fm(n) given by (10.17).
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Fig. 10.2 Plot of
c(m)

j (n)
fm(n) evaluated for n = 10, m = 1,2,3,4, j ∈ {0, . . . , mn(n+1)

2 + 1}, where
the function fm(n) is given by (10.17).

The following behaviour is suggested by Fig 10.2.

Conjecture 10.3. For any integers m,n ≥ 1, the coefficients c(m)
j (n) belong to

a normally distribution shaped curve. If true, this conjecture would explain
the unimodality of c(m)

j (n) for fixed m,n, as well as the asymptotic limits for
cm

0 (n) as n increases to infinity, for fixed m.
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10.3 Ordered k-partitions of multisets

An important problem is the study of the number of partitions of multisets
having certain properties. Results concerning the number of partitions of
multisets, as well as asymptotic formulae for small multiplicity values were
obtained in the 1970’s by Bender [60] and Bender et al. [61]. For further in-
formation about multiset theory, one may consult Stanley’s paper [217].

Some partition problems have important practical applications, as for ex-
ample the famous strongly NP-complete problem related to 3-partitions. For
the positive integers b,m and a1, . . . , an such that n = 3m and ∑n

s=1 as = mb,
one needs to partition the set {a1, . . . , an} into m subsets, each containing
exactly three elements, whose sum is exactly b (see, e.g., [104] and [105]).
For example, the set {10,13,5,15,7,10} can be partitioned into the two sets
{10,13,7}, {5,15,10}, each of which sum to 30.

The key results in this section were published in [22], while the connec-
tions to Diophantine equations were explored in [23] and [24].

10.3.1 Notations and basic formulae

Let α1, . . . ,αn be real numbers, m1, . . . ,mn positive integers. For the multiset

M = {α1, · · · ,α1︸ ︷︷ ︸
m1 times

, · · · ,αn, · · · ,αn︸ ︷︷ ︸
mn times

},

the number ms is called the multiplicity of the element αs, s = 1, . . . ,n, while
σ(M) = ∑n

s=1 msαs represents the sum of the elements of M. For a simplified
notation, we shall denote m = (m1, . . . ,mn) and α = (α1, . . . ,αn).

Definition 10.2. Let k ≥ 2 be an integer. Denote by Sk(m;α) the number of
ordered k-partitions of M having equal sums, i.e., the number of k-tuples
(C1, . . . ,Ck) of subsets of pairwise disjoint subsets of M such that

(i) C1 ∪ · · · ∪ Ck = M;

(ii) σ(C1) = · · · = σ(Ck) =
1
k σ(M).

Clearly, one has the relationship Sk(m;α) = k! Nk(m;α), where Nk(m;α) is
the number of non-ordered k-partitions of M.

The number Sk(m;α) is the constant term of the expansion of a Laurent
polynomial F(X1, . . . , Xk−1) ∈Z[X1, . . . , Xk−1, X−1

1 , . . . , X−1
k−1], defined by

F(X1, . . . , Xk−1) =
n

∏
s=1

(
Xαs

1 + · · ·+ Xαs
k−1 +

1
(X1 · · ·Xk−1)αs

)ms

. (10.19)
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Indeed, assume that for s= 1, . . . ,n, from
(

Xαs
1 + · · ·+ Xαs

k−1 +
1

(X1···Xk−1)αs

)ms

we have selected cs
j terms equal to Xαs

j , with j = 1, . . . ,k − 1, and cs
k terms

equal to 1
(X1···Xk−1)αs . Notice that we must have cs

1 + · · ·+ cs
k = ms.

Such a selection contributes to the free term if and only if

X∑n
s=1 cs

1αs
1 · · ·X∑n

s=1 cs
k−1αs

k−1 · 1

(X1 · · ·Xk−1)
∑n

s=1 cs
kαs

= 1,

which is equivalent to
n

∑
s=1

cs
1αs = · · · =

n

∑
s=1

cs
k−1αs =

n

∑
s=1

cs
kαs.

This means that the sets

Cj = {α1, . . . ,α1︸ ︷︷ ︸
c1

j times

, . . . ,αn, . . . ,αn︸ ︷︷ ︸
cn

j times

}, j = 1,2, . . . ,k,

represent a partition of M which also satisfies property (ii) in Definition 10.2.

10.3.2 An integral formula

Ordering (10.19) after the integer powers of Xj, for j = 1, . . . ,k− 1, one has

F(X1, . . . , Xk−1) = ∑
m∈Z

Pm,j(X1, . . . , Xj−1, Xj+1, . . . , Xk−1)Xm
j , (10.20)

where Pm,j(X1, . . . , Xj−1, Xj+1, . . . , Xk−1) are Laurent polynomials. As F is
symmetric in its variables, the polynomials Pm,j are independent of j, hence
we may use the simplified notation Pm(X1, . . . , Xj−1, Xj+1, . . . , Xk−1), and the
free term of F(X1, . . . , Xk−1) is the free term of P0(X1, . . . , Xj−1, Xj+1, . . . , Xk−1).

Denoting by X̃j = (X1, . . . , Xj−1, Xj+1, . . . , Xk−1) for simplicity, we have

F(X1, . . . , Xk−1) =
n

∏
s=1

(
Xαs

1 + · · ·+ Xαs
k−1 +

1
(X1 · · ·Xk−1)αs

)ms

(10.21)

= P0(X̃j) + ∑
m∈Z,m 6=0

Pm(X̃j)Xm
j . (10.22)

Let Xj = cos t + i sin t in (10.21) and integrate with respect to t over [0,2π].
Since the integral of the monomial Xm

j with respect to t over [0,2π] vanishes
for m 6= 0, the integral representation of the polynomial is given by

P0(X̃j) =
1

2π

∫ 2π

0

n

∏
s=1

(
Xαs

1 + · · ·+ Xαs
k−1 +

1
(X1 · · ·Xk−1)αs

)ms

dt. (10.23)
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Setting Xj = X, Xl = 1 for l = 1, . . . ,k− 1 and l 6= j in (10.21), one obtains

n

∏
s=1

(
Xαs + k− 2 +

1
Xαs

)ms

= P0(1, . . . ,1) + ∑
m∈Z,m 6=0

Pm(1, . . . ,1)Xm.

(10.24)

By symmetry in X and X−1 we have

Pm(1, . . . ,1) = P−m(1, . . . ,1), m ∈Z.

Also, from (10.23) we deduce that

P0(1, . . . ,1) =
1

2π

∫ 2π

0

n

∏
s=1

(
Xαs + k− 2 +

1
Xαs

)ms

dt. (10.25)

Note that P0(1, . . . ,1) depends on k, m and α.
Since Xαs + 1

Xαs = 2cosαst, we have the following relation

Qk(m;α) := P0(1, . . . ,1) =
1

2π

∫ 2π

0

n

∏
s=1

(k− 2 + 2cosαst)ms dt. (10.26)

We have that
Qk(m;α) = Sk(m;α) + Rk(m;α), (10.27)

where Rk(m;α) is the sum of the coefficients of P0(X̃j), different from the
free term. Also, setting X = 1 in (10.24) we get km1+···+mn = ∑m∈Z Pm(1 . . . ,1),
that is the sum of all the coefficients in all polynomials Pm is km1+···+mn .

By formula (10.26), after simple computations it follows that

Q4(m;α) = Q2

(
2m;

α

2

)
.

As shown in [42], the integral formula for the number of ordered 2-
partitions with equal sum of the multiset M is

c0(m;α) = S2(m;α) =
2m1+···+mn

2π

∫ 2π

0

n

∏
s=1

(cosαst)ms dt, (10.28)

which for m1 = · · · = mn = m and αs = s, s = 1, . . . ,n, produces the formula

c(m)
0 (n) =

2nm

2π

∫ 2π

0

n

∏
s=1

(cos st)m dt. (10.29)

If Qk(n) = Qk(1, . . . ,1;1,2, . . . ,n), then Q2(n) = c(1)0 (n) and Q4(n) = c(2)0 (n).
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10.3.3 k-partitions with equal sums of the set {1, . . . ,n}

In this section we set αs = s and ms = 1, for s = 1, . . . ,n and use the simplified
notations Sk(n) for Sk(m;α) and Rk(n) for Rk(m;α). Some recurrences can
be obtained for the coefficients of the polynomial F(X1, . . . , Xk−1) defined by
(10.19), which is indexed by the level n, as in the formula

Fn(X1, . . . , Xk−1) =
n

∏
s=1

(
Xs

1 + · · ·+ Xs
k−1 +

1
(X1 · · ·Xk−1)s

)
. (10.30)

We first write Fn(X1, . . . , Xk−1) as a Laurent polynomial in X1, . . . , Xk−1
with integer coefficients, given by he formula

Fn(X1, . . . , Xk−1) = ∑
j1,...,jk−1∈Z

cj1,...,jk−1
(n)X j1

1 X j2
2 · · ·X

jk−1
k−1 . (10.31)

Clearly, we have Fn(X1, . . . , Xk−1) =
U(X1,...,Xk−1)
V(X1,...,Xk−1)

, where U and V are polyno-

mials. If V 6= 0 at the origin of Rk−1, then the coefficients in (10.31) are given
by the Cauchy integral formula

cj1,...,jk−1(n) =
1

(2πi)k−1

∫
T

Fn(X1, . . . , Xk−1)

x1 · · · xk−1
x−j1

1 · · · x−jk−1
k−1 dx1 ∧ · · · ∧ dxk−1,

(10.32)

with T a product of sufficiently small circles around the coordinate axes of
Rk−1. While this is a closed formula, for effective computations it is more
practical to use a recurrence between the coefficients of levels n and n− 1.

Theorem 10.1. Denote by e1, . . . ,ek−1 the vectors of the canonical basis in Zk−1.
The following recurrence relation is valid for j = (j1, . . . , jk−1) ∈Zk−1 and n ≥ 1:

cj(n) = cj−ne1(n− 1) + · · ·+ cj−nek−1(n− 1) + cj+n(1,...,1)(n− 1). (10.33)

Proof. Indeed, by formula (10.30) we obtain

Fn(X1, . . . , Xk−1) = Fn−1(X1, . . . , Xk−1)

(
Xn

1 + · · ·+ Xn
k−1 +

1
(X1X2 · · ·Xk−1)n

)

=

 ∑
j∈Zk−1

cj(n− 1)X j1
1 · · ·X

jk−1
k−1

(Xn
1 + · · ·+ Xn

k−1 +
1

(X1 · · ·Xk−1)n

)
= ∑

j∈Zk−1

cj(n− 1)
(

X j1+n
1 · · ·X jk−1

k−1 + · · ·+ X j1
1 · · ·X

jk−1+n
k−1 + X j1−n

1 · · ·X jk−1−n
k−1

)
= ∑

j∈Zk−1

(
cj−ne1(n− 1) + · · ·+ cj−nek−1(n− 1) + cj+n(1,...,1)(n− 1)

)
X j1

1 · · ·X
jk−1
k−1 .



10.3 Ordered k-partitions of multisets 289

�

For each j ∈ {1, . . . ,k− 1}, we write Fn as a Laurent polynomial in Xj as

Fn(X1, . . . , Xk−1) = ∑
m∈Z

Pn,m,j(X̃j)Xm
j , (10.34)

where X̃j = (X1, . . . , Xj−1, Xj+1, . . . , Xk−1). Since Fn(X1, . . . , Xk−1) is symmet-
ric, the coefficients Pn,m,j are independent of j, so the simplified notation
Pn,m(X̃j) can be used. These polynomials can be obtained recursively.

Theorem 10.2. The recurrence below holds for m ∈Z, j = 1, . . . ,k− 1 and n ≥ 1.

Pn,m(X̃j) = Pn−1,m−n(X̃j) +
(

∑
p 6=j

Xn
p

)
Pn−1,m(X̃j) +

(
∏
p 6=j

Xp

)−n
Pn−1,m+n(X̃j).

Also, for m = 0 we have

Pn,0(X̃j) = Pn−1,−n(X̃j) +
(

∑
p 6=j

Xn
p

)
Pn−1,0(X̃j) +

(
∏
p 6=j

Xp

)−n
Pn−1,n(X̃j).

(10.35)

Proof. The following formula can be established.

Fn(X1, . . . , Xk−1) = Fn−1(X1, . . . , Xk−1)

(
Xn

1 + · · ·+ Xn
k−1 +

1
(X1 · · ·Xk−1)n

)
=

(
∑

m∈Z

Pn−1,m(X̃j)Xm
j

)(
Xn

1 + · · ·+ Xn
k−1 +

1
(X1 · · ·Xk−1)n

)
= ∑

m∈Z

[Pn−1,m−n(X̃j) +
(

∑
p 6=j

Xn
p

)
Pn−1,m(X̃j) +

(
∏
p 6=j

Xp

)−n
Pn−1,m+n(X̃j)]Xm

j .

Substituting m = 0 into this formula, we obtain (10.35). �

Setting X1 = X and Xp = 1 for p = 2, . . . ,k− 1 in (10.30), one obtains

Fn(X,1, . . . ,1) =
n

∏
s=1

(
Xs + k− 2 +

1
Xs

)
= ∑

m∈Z

Pn,m(1, . . . ,1)Xm. (10.36)

Notice that Pn,m(1, . . . ,1) = Pn,−m(1, . . . ,1), m ∈Z, which represents the sum
of the coefficients of the Laurent polynomial Pn,m(X1, . . . , Xk−1). For simplic-
ity, we denote Pn,m := Pn,m(1, . . . ,1). The terms of the sequence {Pn,0}n≥1 can
be obtained from the following double recurrence:

Pn,0 = Pn−1,−n + Pn−1,0 + Pn−1,n = Pn−1,0 + 2Pn−1,n. (10.37)
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From the integral formula (10.26) applied in this case, we can also com-
pute the terms Pn,0 directly. Since this computation is actually performed for
a given value of k, for what follows we introduce the notation

Qk(n) = Pn,0 = Sk(n) + Rk(n) =
1

2π

∫ 2π

0

n

∏
s=1

(k− 2 + 2cos st)dt. (10.38)

10.3.4 Numerical examples and integer sequences

In we analyze some numerical examples for Sk(n), Rk(n) and Qk(n). In this
process we provide new context for a number of existing sequences, and
identify novel entries to OEIS. We then establish a polynomial formula for
Qk(n) and conjecture its asymptotic behaviour. We also conjecture proper-
ties related to the distribution of perfect powers within this sequence.

10.3.4.1 Integer sequences related to Sk(n) and k-partitions of multisets

Denoting by T(n,k) the number of set partitions of [n] into k blocks with
equal element sum, this is indexed since 2016 in OEIS as a triangle A275714.
We have Sk(n) = k! · T(n,k).

Example 10.1. S3(n) has been recently added by us to OEIS as A317577:

0,0,0,0,6,6,0,18,54,0,258,612,0,3570,8880,0,55764,142368,0,947946,
2468844,0,17099808,45375498,0,323927184,871038570,0, . . . .

For n = 3k + 1, the number n(n+1)
2 is not divisible by 3, hence S3(n) = 0. Also,

S3(n) = 6 · a(n), where a(n) is the sequence A112972 in OEIS.

Example 10.2. For k = 4, the free term S4(n) produces a new OEIS sequence:

0,0,0,0,0,0,24,24,0,0,0,0,0,0,20904,63600,0,0,0,0,0,0,227090256, . . . .

For n 6= 8k− 1,8k, the number n(n+1)
2 is not divisible by 4, hence S4(n) = 0.

Example 10.3. For k = 5, the free term S5(n) produces a new OEIS sequence:

0,0,0,0,0,0,0,0,120,120,0,0,0,8160,22440,0,0,0,3331560,13021920,0, . . . .

For n 6= 5k− 1,5k, the number n(n+1)
2 is not divisible by 5, hence S5(n) = 0.
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10.3.4.2 Integer sequences related to Qk(n) and the 3-signum equation

We now investigate the expression Qk(n) defined by (10.38). In particular,
Q3(n) gives the number of solutions of the 3-signum equation [15]

1 · ε1 + 2 · ε2 + · · ·+ n · εn = 0, (10.39)

where εs ∈ {−1,0,1}, s = 1, . . . ,n. Below we study some properties of this
sequence and we illustrate a counting procedure for Qk(n) when k = 3, k = 4
and k = 5. We then highlight some novel integer sequences.

The following result provides a new combinatorial context for Qk(n).

Theorem 10.3. A formula for Qk(n) is given by the number of ordered partitions
of [n] into k disjoint sets A1, . . . , Ak, with the property σ(A1) = σ(Ak).

Proof. A monomial Xd1
1 · · ·X

dk−1
k−1 (X1 · · ·Xk−1)

−dk of Fn(X1, . . . , Xk−1) in (10.30)
is independent of X1 if and only if d1 = dk. The number of such monomi-
als equals the number the ordered partitions A1, A2, . . . , Ak of [n] such that
σ(A1) = σ(Ak) = d1, with dj ≥ 0 for j = 1, . . . ,k and d1 + · · ·+ dk = σ([n]). �

Example 10.4. For k = 3, the sequence Q3(n) starts with the terms

1,1,3,7,15,35,87,217,547,1417,3735,9911,26513,71581,194681,532481, . . . .

and is indexed in the OEIS as A007576. Same terms are obtained from

Q3(n) =
1

2π

∫ 2π

0

n

∏
s=1

(1 + 2cos st)dt. (10.40)

It was recently conjectured (see context for A007576 in OEIS [190]) that

Q3(n) ∼
1

2
√

π
· 3n+1

n3/2 .

As the monomials in the Fn(X,Y) expansion have the form XαYβ(XY)−γ,
a term is independent of X if and only if α = γ. To identify the numbers of
terms independent of X, we count all subsets A and B of {1,2, . . . ,n} such
that A∩ B = ∅ with σ(A) = σ(B) = α with α, β,γ≥ 0 and α+ β+ γ = σ([n]).
This is equivalent to finding the number of solutions of the 3-signum equa-
tion (10.39). For k = 3 we list below the triples obtained for n = 4 and n = 5.

When [n] = {1,2,3,4}, we have σ([n]) = 10. We enumerate the partitions
A, B,C of [n] having the property σ(A) = σ(C). The problem is equivalent to
finding all the triplets (α, β,γ) such that α, β,γ≥ 0, α = γ and α+ β+ γ = 10.
Table 10.1 presents all such partitions and εs, s = 1, . . . ,4, satisfying (10.39).
Adding the multiplicities we confirm that Q3(4) = 7.
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α β γ A B C ε1 ε2 ε3 ε4 Multiplicity
0 10 0 ∅ [n] ∅ 0 0 0 0 1
3 4 3 {1,2} {4} {3} 1 1 -1 0 1

{3} {4} {1,2} -1 -1 1 0 1
4 2 4 {1,3} {2} {4} 1 0 1 -1 1

{4} {2} {1,3} -1 0 -1 1 1
5 5 5 {1,4} ∅ {2,3} 1 -1 -1 1 1

{2,3} ∅ {1,4} -1 1 1 -1 1
Table 10.1 Partitions of [n] into k subsets when n = 4 and k = 3. Q3(n) = 7 for n = 4.

When [n] = {1,2,3,4,5}, we have σ([n]) = 15. We count the partitions
A, B,C of [n] such that σ(A) = σ(C). To this end we find the number of
triplets (α, β,γ) such that α, β,γ ≥ 0, α = γ and α + β + γ = 15. From simple
computations we obtain Table 10.2 presenting all possible subset configura-
tions, along with the corresponding values for εs, s = 1, . . . ,5, which feature
in (10.39). Adding the multiplicities one may confirm that Q3(5) = 15.

α β γ A B C ε1 ε2 ε3 ε4 ε5 Multiplicity
0 15 0 ∅ [n] ∅ 0 0 0 0 0 1
3 9 3 {1,2} {4,5} {3} 1 1 -1 0 0 1

{3} {4,5} {1,2} -1 -1 1 0 0 1
4 7 4 {1,3} {2,5} {4} 1 0 1 -1 0 1

{4} {2,5} {1,3} -1 0 -1 1 0 1
5 5 5 {1,4} {2,3} {5} 1 0 0 1 -1 1

{5} {2,3} {1,4} -1 0 0 -1 1 1
{2,3} {1,4} {5} 0 1 1 0 -1 1
{5} {1,4} {2,3} 0 -1 -1 0 1 1
{1,4} {5} {2,3} 1 -1 -1 1 0 1
{2,3} {5} {1,4} -1 1 1 -1 0 1

6 3 6 {1,5} {3} {2,4} 1 -1 0 -1 1 1
{2,4} {3} {1,5} -1 1 0 1 -1 1

7 1 7 {2,5} {1} {3,4} 0 1 -1 -1 1 1
{3,4} {1} {2,5} 0 -1 1 1 -1 1

Table 10.2 Partitions of [n] into k subsets when n = 5 and k = 3. Q3(n) = 15 for n = 5.

Example 10.5. The sequence Q4(n) (A047653 in OEIS) starts with

2,4,10,26,76,236,760,2522,8556,29504,103130,364548,1300820,

for which we also give the a new integral formula

Q4(n) =
1

2π

∫ 2π

0

n

∏
s=1

(2 + 2cos st)dt =
22n

2π

∫ 2π

0

n

∏
s=1

cos2 st
2

dt. (10.41)
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An asymptotic expansion was conjectured in 2014 (see A047653 in [190])

Q4(n) ∼
√

3
π
· 4n

n3/2 .

The sequence R4(n) is also novel, and begins with the numbers

2,4,10,26,76,236,736,2498,8556,29504,103130,364548,1300820,
4679472,16931258,61726842, . . .

Count the partitions A, B,C, D of {1,2,3,4,5} such that σ(A) = σ(D), that
is the number of 4-tuples (α, β,γ,δ) with the properties α, β,γ,δ ≥ 0, α = δ
and α + β + γ + δ = 15. Direct computations give the values in Table 10.3.

α β + γ δ A B ∪ C D ε1 ε2 ε3 ε4 ε5 Multiplicity
0 15 0 ∅ [n] ∅ 0 0 0 0 0 25

3 9 3 {1,2} {4,5} {3} 1 1 -1 0 0 22

{3} {4,5} {1,2} -1 -1 1 0 0 22

4 7 4 {1,3} {2,5} {4} 1 0 1 -1 0 22

{4} {2,5} {1,3} -1 0 -1 1 0 22

5 5 5 {1,4} {2,3} {5} 1 0 0 1 -1 22

{5} {2,3} {1,4} -1 0 0 -1 1 22

{2,3} {1,4} {5} 0 1 1 0 -1 22

{5} {1,4} {2,3} 0 -1 -1 0 1 22

{1,4} {5} {2,3} 1 -1 -1 1 0 2
{2,3} {5} {1,4} -1 1 1 -1 0 2

6 3 6 {1,5} {3} {2,4} 1 -1 0 -1 1 2
{2,4} {3} {1,5} -1 1 0 1 -1 2

7 1 7 {2,5} {1} {3,4} 0 1 -1 -1 1 2
{3,4} {1} {2,5} 0 -1 1 1 -1 2

Table 10.3 Partitions of [n] into k subsets when n = 5 and k = 4. Q4(n) = 76 for n = 5.

One may notice that Q4(5) = 76 = 25 + 8 · 22 + 6 · 2.

Remark. In Table 10.3, the B ∪ C column contains all elements just once.
There are 8 instances where this contains two elements, and then finally, 6
instances where this only has a single element. This suggest the formula

Qk(5) = (k− 2)5 + 8(k− 2)2 + 6(k− 2), (k ≥ 2) (10.42)

which will be fully explained by Theorem 10.4.
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Example 10.6. The sequence Q5(n) produces the new integer sequence

3,9,29,95,333,1215,4661,18509,76281,321729,1386757,6070591, . . . .

First, observe that 35 + 8 · 32 + 6 · 3 = 333 = Q5(5), in accordance with (10.42).
We count partitions A, B,C, D, E of {1,2,3,4,5,6} such that σ(A) = σ(E), that

is the number of 5-tuples (α, β,γ,δ,ε) such that α, β,γ,δ,ε≥ 0, α = ε and α + β +
γ + δ + ε = 21. Simple computations give the values in Table 10.4.

α ∑ β ε A ∪B E ε1 ε2 ε3 ε4 ε5 ε6 Mult.
0 21 0 ∅ [n] ∅ 0 0 0 0 0 0 36

3 15 3 {1,2} {4,5,6} {3} 1 1 -1 0 0 0 33

{3} {4,5,6} {1,2} -1 -1 1 0 0 0 33

4 13 4 {1,3} {2,5,6} {4} 1 0 1 -1 0 0 33

{4} {2,5,6} {1,3} -1 0 -1 1 0 0 33

5 11 5 {1,4} {2,3,6} {5} 1 0 0 1 -1 0 33

{5} {2,3,6} {1,4} -1 0 0 -1 1 0 33

{2,3} {1,4,6} {5} 0 1 1 0 -1 0 33

{5} {1,4,6} {2,3} 0 -1 -1 0 1 0 33

{1,4} {5,6} {2,3} 1 -1 -1 1 0 0 32

{2,3} {5,6} {1,4} -1 1 1 -1 0 0 32

6 9 6 {1,5} {2,3,4} {6} 1 0 0 0 1 -1 33

{6} {1,3,5} {1,5} -1 0 0 0 -1 1 33

{2,4} {1,3,5} {6} 0 1 0 1 0 -1 33

{6} {1,3,5} {2,4} 0 -1 0 -1 0 1 33

{1,2,3} {4,5} {6} 1 1 1 0 0 -1 32

{6} {4,5} {1,2,3} -1 -1 -1 0 0 1 32

{1,5} {3,6} {2,4} 1 -1 0 -1 1 0 32

{2,4} {3,6} {1,5} -1 -1 0 -1 1 0 32

7 7 7 {1,6} {3,4} {2,5} 1 -1 0 0 -1 1 32

{2,5} {3,4} {1,6} -1 1 0 0 1 -1 32

{1,6} {2,5} {3,4} 1 0 -1 -1 0 1 32

{3,4} {2,5} {1,6} -1 0 1 1 0 -1 32

{2,5} {1,6} {3,4} 0 1 -1 -1 1 0 32

{3,4} {1,6} {2,5} 0 -1 1 1 -1 0 32

8 5 8 {2,6} {1,4} {3,5} 0 1 -1 0 -1 1 32

{3,5} {1,4} {2,6} 0 -1 1 0 1 -1 32

{2,6} {5} {1,3,4} -1 1 -1 -1 0 1 31

{1,3,4} {5} {2,6} 1 -1 1 1 0 -1 31

9 3 9 {3,6} {1,2} {4,5} 0 0 1 -1 -1 1 32

{4,5} {1,2} {3,6} 0 0 -1 1 1 -1 32

{4,5} {3} {1,2,6} -1 -1 0 1 1 -1 31

{1,2,6} {3} {4,5} 1 1 0 -1 -1 1 31

10 1 10 {4,6} {1} {2,3,5} 0 -1 -1 1 -1 1 31

{2,3,5} {1} {4,6} 0 1 1 -1 1 -1 31

Table 10.4 Partitions of [n] into k subsets when n = 6 and k = 5. Q5(n) = 1215 for n = 6.

Notice that we have Q5(6) = 1215 = 36 + 12 · 33 + 16 · 32 + 6 · 3 for n = 6.
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Remark. In Table 10.4, the union B ∪ C ∪D contains all elements once. In 12
instances it contains three elements, in 16 it contains two elements, and in 6
it only has one element. This suggests a formula for Qk(6), k ≥ 2:

Qk(6) = (k− 2)6 + 12(k− 2)3 + 16(k− 2)2 + 6(k− 2). (10.43)

Tables 10.1 and 10.2 also inspire formulae for Qk(3) and Qk(4):

Qk(3) = (k− 2)3 + 2, Qk(4) = (k− 2)4 + 4(k− 2) + 2. (10.44)

An enumerative formula for Qk(n) is given by the following result.

Theorem 10.4. 1◦ The following formula holds

Qk(n) =
n

∑
d=0

N(d,n) · (k− 2)n−d,

where for each d = 0, . . . ,n, and N(d,n) is the number of ordered partitions of [n]
into 3 subsets A, B,C, such that the cardinality of B is d and σ(A) = σ(C).

2◦ If σd (cos t, cos2t, . . . , cosnt) represents the d-th symmetric sum of the terms
cos t, cos2t, . . . , cosnt, then the coefficients N(d,n) are given by the formula

N(d,n) =
2d

2π

∫ 2π

0
σd (cos t, cos2t, . . . , cosnt) dt, d = 0, . . . ,n. (10.45)

Proof. Recall that by formula (10.38) we have

Qk(n) =
1

2π

∫ 2π

0

n

∏
s=1

(k− 2 + 2cos st)dt,

hence Qk(n) is a monic polynomial of degree n in k− 2.

1◦ By Theorem 10.3, Qk(n) represents the number of ordered partitions
of [n] into k subsets A1, . . . , Ak, with the property σ(A1) = σ(Ak).

Consider a 3-partition A, B,C of [n] such that σ(A) = σ(C) and assume
that A ∪ C has d elements, d = 0, . . . ,n (denote the number of these 3-
partitions by N(d,n)). The number of ordered partitions of [n] into k sub-
sets generated by this configuration, having the properties A1 = A and
B = A2 ∪ · · · ∪ Ak−1 and Ak = C is (k− 2)n−d (i.e., the number of functions
between a set with n− d elements and a set with k− 2 elements).

Clearly, Qk(n) is as a linear combination of powers of k − 2, where the
coefficient of (k− 2)n−d has the multiplicity N(d,n).

2◦ For d = 0, . . . ,n the coefficients are

N(d,n) =
2d

2π

∫ 2π

0
∑

1≤k1<k2<···<kd≤n
cosk1tcosk2t · · ·coskdtdt. � (10.46)



296 10 Partitions and Recurrences

Corollary 10.1. Let Nk1,...,kd
be the number of solutions of the 2-signum equation

±k1 ± k2 ± · · · ± kd = 0,

(i.e., the number of ordered 2-partitions with equal sums of the set {k1, . . . ,kd}).
The following relation holds true

N(d,n) = ∑
1≤k1<k2<···<kd≤n

Nk1,...,kd
. (10.47)

Proof. The following identity is known to hold (see, e.g., [29]):

2d
d

∏
s=1

coskst = ∑cos (±k1t± k2t± · · · ± kdt) , (10.48)

where the sum is taken over all the choices of + and −.
Also, notice that for an integer k ∈Z one has

1
2π

∫ 2π

0
cosktdt =

{
1, k = 0
0, k 6= 0.

For fixed 1≤ k1 < k2 < · · · < kd ≤ n, the integral of (10.46) gives Nk1,...,kd
, by

(10.48). Summing over all such configurations we obtain (10.47). �

We can now easily compute some coefficients.

Case d = 0. First, one has N(0,n) = 1.
Case d = 1. For k1 = 1, . . . ,n, Nk1 = 0, so N(1,n) = 0 by Corollary 10.1.
Case d = 2. Whenever 1≤ k1 < k2 ≤ n we have Nk1,k2 = 0, hence N(2,n) = 0.
Case d = 3. By Corollary 10.1, N(3,n) corresponds to the number of ordered
triplets (k1,k2,k3) such that 1≤ k1 < k2 < k3 ≤ n such that k1 + k2 = k3. This
is the number of pairs (k1,k2) with 1≤ k1 < k2 < n and k1 + k2 ≤ n.

If k1 = 1, then k2 takes the values 2, . . . ,n− 1; If k1 = 2, then k2 takes the
values 3, . . . ,n− 2, and so on. Finally, if k1 = b n

2 c then one has k2 = b n
2 c+ 1

for n odd, and there is no solution k2 for n even. This gives the expression

N(3,n) = 2
⌊

n
2

⌋(
n−

⌊
n
2

⌋
− 1
)
=

⌊
n2

2

⌋
,

where the last formula is obtained by trying even and odd cases. One may
notice that this sequence corresponds to the OEIS entry A007590.

Case d = n. One obtains

N(n,n) = 2n · 1
2π

∫ 2π

0

n

∏
s=1

cos stdt = Q2(n) = N1,2,...,n.
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10.3.5 Conjectures concerning Qk(n)

We conjecture the asymptotic behaviour and some properties of Qk(n),
which relate to the sequence containing perfect powers.

Conjecture 10.4. For k ≥ 2, the following asymptotic formula holds

Qk(n) ∼
√

3
2
· 1√

π
· kn+ 1

2

n3/2 ,

as n → ∞. The formula for Q2(n) conjectured by Andrica and Tomescu
in 2002 was proved by Sullivan in 2013, while the asymptotic formula for
Q3(n) has been proposed by Finch in 2009 (see A007576 in OEIS [190]).
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Fig. 10.3 First 50 terms of Qk(n)
f (k,n) evaluated for k = 3,4,5,6, with f (k,n) =

√
3

2
√

π
· kn+ 1

2

n3/2 .

Conjecture 10.5. It seems to us that the sequence Qk(3) (10.44) (A084380 in
OEIS [190]) does not contain any perfect squares, i.e., the elliptic equation

x3 + 2 = y2

has no solution in positive integers.

This property is linked to a Catalan-type conjecture related to Pillai’s
equation ax − by = n, with a > 0,b > 0, x > 1,y > 1 integers. This states that
for any integer n, there are finitely many perfect powers whose difference
is n. For n = 2, the only solution involving perfect powers smaller than 1018

was 2 = 33 − 52. The number of such solutions is linked to A076427.
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We conjecture that:

1◦ Sequence Qk(4) (10.44) does not contain any perfect cubes.
It is easily seen that [(k − 2)2]2 < Qk(4) < [(k − 2)2 + 1]2, hence Qk(4)
does not have perfect squares, i.e., the equation

x4 + 4x + 2 = y3

has no solution in positive integers.

2◦ Sequence Qk(5) (10.42) does not contain any perfect fourth powers.
This is to say that the only non-negative integer solution of the equation

x5 + 8x2 + 6x = y4

is the trivial solution x = y = 0.

3◦ Sequence Qk(6) (10.43) does not contain any perfect fifth powers.
This is equivalent to the equation

x6 + 12x3 + 16x2 + 6x = y5

having no solution in non-negative integers, apart from x = y = 0.

The items 1◦, 2◦ and 3◦ of Conjecture 10.5 have been checked up to k = 104.

The only perfect power encountered in sequences Qk(4), Qk(5) or Qk(6)
was found for n = 5 and k = 8 where Q8(5) = 65 + 8 · 62 + 6 · 6 = 8100 = 902.

We suggest that for j≥ 2, the number of perfect powers xl in the sequence
Qk(j + 1) is zero for l = j, and finite for 2≤ l < j.
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36. Andrica, D., Văcăreţu, D., Representation theorems and almost unimodal sequences, Stu-
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first order, 138
higher order, 149
reduction of order, 146
second order, 140
space of solutions, 154

recursive functions, 138
recursive relation, 138
Residue theorem, 135
residue theorem, 134

sequence
Catalan, 128

sequences
Fibonacci, 158
Lucas, 158
Pell, 158
Pell-Lucas, 158

set operations
Cartesian product, 81
complement, 80
De Morgan Laws, 80
difference, 80
intersection, 80
partition, 81
symmetric difference, 80
union, 80

sets
derangements, 103

sets and functions, 79
signum equation, 274

asymptotic formula, 275
sum

geometric, 55
of powers, 53
symbol, 51
telescopic, 52
trigonometric, 56

triangulation, 75
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